Article citation info:

Nycz D B. Influence of impact angle and humidity on TB11 virtual crash tests for SP-05/2 road safety barrier. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2016; 73(3): 71-88, http://dx.doi.org/10.14669/ AM.VOL73.ART5

Wpływ kąta zderzenia oraz wilgotności na wirtualne testy zderzeniowe TB11 bariery SP-05/2

D. B. NYCZ¹

Instytut Techniczny, Państwowa Wyższa Szkoła Zawodowa im. Jana Grodka w Sanoku

Streszczenie

W pracy przedstawiono badania numeryczne wpływu wybranych czynników, tj. kąta zderzenia oraz suchej/mokrej nawierzchni drogi i pobocza, na przebieg wirtualnego testu zderzeniowego TB11. Testy dotyczą bariery klasy N2-W4-A w łuku poziomym wklęsłym o promieniu 150 m, uderzanej samochodem Geo Metro pod kątem 20°. Nakładka jest łatwa w montażu, bez ingerencji w barierę stalową, poprzez mocowanie za pomocą łączników śrubowych z prostokątnymi podkładkami gumowymi, w wolnych otworach prowadnicy. Obliczenia numeryczne przeprowadzono w środowisku LS-Dyna, wykorzystując model pojazdu Geo Metro zaczerpnięty ze strony NCAC i odpowiednio zmodyfikowany. Analizą objęto parametry jakościowe i ilościowe określające testy zderzeniowe, zgodnie z normami PN-EN 1317-1:2010 i PN-EN 1317-2:2010. Zaprojektowana nakładka kompozytowo-pianowa zapewnia przyjęcie wirtualnych testów zderzeniowych dla normowego kąta zderzenia, w warunkach suchych i mokrych. Wpływ kąta zderzenia na przebieg testu zderzeniowego jest złożony. Zwiększenie kąta do 30° może prowadzić do niespełnienia warunku wyprowadzenia pojazdu na jezdnię.

Słowa kluczowe: wirtualny test zderzeniowy TB11, bariera w łuku poziomym wklęsłym, nakładka kompozytowo-pianowa, kąt zderzenia, wilgotność

Keywords: TB11 virtual crash test, barrier in horizontal concave arc, composite-foam overlay, impact angle, humidity

1. Wprowadzenie

¹ Państwowa Wyższa Szkoła Zawodowa im. Jana Grodka w Sanoku, Instytut Techniczny, ul. Reymonta 6, 38-500 Sanok; e-mail: daniel.nycz@interia.pl

Jan Grodek State Vocational Academy in Sanok, Technical Institute, ul. Reymonta 6, 38-500 Sanok; e-mail: daniel.nycz@interia.pl

Modelowanie i badania numeryczne drogowych testów zderzeniowych są przedmiotem szeregu publikacji. Rozpatruje się w nich różne systemy powstrzymywania, m.in. stalowe [1, 6, 7, 9, 13, 19, 20, 22, 23] oraz betonowe [3÷5, 10] bariery ochronne. Modele pojazdów zaczerpnięte są ze strony National Crash Analysis Center (NCAC), USA [29].

W przypadku stalowych barier ochronnych, w większości przypadków analizie poddane są bariery prostoliniowe o różnych poziomach powstrzymywania, m.in. w pracach [6, 7, 23] rozpatruje się barierę o poziomie powstrzymywania H1 (TB11, TB42), a w pracy [15] – o poziomie powstrzymywania N2 (TB11, TB32) [25, 26].

W pracy [19] przedstawiono wyniki symulacji testów zderzeniowych w systemie LS-Dyna lekkiego pojazdu z barierą w łuku poziomym o promieniu ca. 12 m i prowadnicą typu W. Uproszczony model pojazdu zaczerpnięto z biblioteki NCAC [29]. Model materiałowy stali przyjęto jak w pracy [1]. Słupki C150 były zamocowane w walcach betonowych. Prędkość zderzenia wynosiła 40, 60 i 80 km/h. We wszystkich przypadkach samochód uderzał w barierę prawie pod kątem 0° i ślizgał się po barierze, nie doznając większych uszkodzeń, a następnie był poprawnie wyprowadzony z interakcji z barierą. Celem badań było porównanie indeksu intensywności przyspieszenia ASI.

Analizę wpływu uderzenia pojazdu Geo Metro w betonową barierę ochronną w łuku poziomym o promieniu 50, 100 i 200 m oraz kierunku ruchu, z którego nadjeżdża pojazd, przeprowadzono w pracy [3]. Na podstawie otrzymanych wyników stwierdzono, że najbardziej niebezpiecznym przypadkiem jest zderzenie samochodu z barierą o promieniu 50 m, kiedy samochód wyjeżdża z wewnętrznego łuku. Ponadto, stwierdzono, że dla tego typu kolizji najbardziej niebezpieczne są duże kąty natarcia pojazdu na barierę.

W pracach [6, 7] autorzy przeprowadzili modelowanie i symulację testów zderzeniowych TB11 i TB42 dla bariery o poziomie powstrzymywania H1. Modele pojazdów zaczerpnięto z biblioteki publicznej NCAC [29]. Dokonano na nich kilku modyfikacji. Barierę prostoliniową modelowano za pomocą elementów powłokowych, traktując prowadnicę jako belkę ciągłą (bez złączy). Autorzy badali wpływ czterech zmian konstrukcyjnych w barierze drogowej: 1) wprowadzenie pasa rozciąganego, 2) wprowadzenie prowadzenia rolkowego, 3) wprowadzenie liny w górnej części prowadnicy, 4) wprowadzenie liny w dolnej części prowadnicy. Testy wirtualne porównano z rzeczywistymi testami zderzeniowymi. W analizie uwzględniono jedynie parametry ASI, THIV dla testu TB11 oraz szerokość pracującą W dla testu TB42.

Badania numeryczne wpływu kąta najazdu samochodu Geo Metro na betonową barierę drogową przeprowadzono w pracy [5]. Przedstawiono trajektorie ruchu oraz deformacje pojazdu, odpowiadające kątom zderzenia 10°, 20°, 30°, 40°. Model numeryczny pojazdu zaczerpnięto z biblioteki NCAC [29]. W kolejnej pracy [4] rozwinięto modelowanie numeryczne i symulacje testów zderzeniowych TB11 i TB32 przy uwzględnieniu nieruchomych lub ruchomych segmentów betonowej bariery drogowej. Wyniki obejmują zachowanie i deformacje pojazdów oraz indeks ASI.

2. Badany system oraz testy zderzeniowe objęte analizą

Przedmiotem badań jest bariera drogowa SP-05/2, klasy N2-W4-A, której producentem jest firma Stalprodukt S.A, z siedzibą w Bochni [28]. Bariera składa się z odcinków (o długości całkowitej 4.30 m każdy) prowadnicy typu B, słupków Sigma o długości 1.9 m oraz wsporników trapezowych i podkładek prostokątnych. Wszystkie elementy bariery wykonane

są ze stali S235JR i poddane procesowi cynkowania ogniowego. Jako łączniki elementów systemu SP-05/2 zastosowano śruby M16 klasy 4.6 [27, 28].

Zgodnie z [25, 26], warunkiem przyjęcia systemu powstrzymywania klasy N2, jest spełnienie kryteriów zderzeniowych dla testów TB11 i TB32 (TB11: samochód osobowy o masie 900 kg i prędkości 100 km/h, kąt zderzenia 20°; TB32: samochód osobowy o masie 1500 kg i prędkości 110 km/h, kąt zderzenia 20°). Częściowe wyniki testów zderzeniowych systemu SP-05/2 zostały podane przez producenta [28].

Testy zderzeniowe zatwierdzające system powstrzymywania wykonywane są na prostoliniowych odcinkach bariery, zgodnie z [25, 26]. W pracach [16, 18, 21], wykazano na podstawie wirtualnych testów zderzeniowych TB11 i TB32, że system SP-05/2 w łuku o promieniu 150 m nie spełnia kryteriów przyjęcia bariery zgodnie z [25, 26]. Promień 150 m jest najmniejszym promieniem krzywizny bariery zewnętrznej na łuku dróg GP.

W celu zapewnienia spełnienia kryteriów normowych [25, 26] na łukach dróg przez system SP-05/2, zaprojektowano nakładkę kompozytowo-pianową o kodzie CFR2 [15, 16, 17, 21]. Nakładka CFR2 jest rozwiązaniem oryginalnym i chronionym przez zgłoszenie patentowe [15].

Przekrój poprzeczny nakładki CFR2 został dopasowany do prowadnicy typu B bariery drogowej. Całkowita długość segmentu nakładki wynosi 4.70 m, przy długości efektywnej 4.00 m. Nakładka składa się z powłoki kompozytowej GFRP przedniej i tylnej oraz wypełnienia piankowego. Matrycą powłok kompozytowych jest żywica poliestrowa Polimal 104S. Jako wzmocnienie lamin kompozytu zastosowano tkaninę szklaną zrównoważoną z przeplotem prostym STR600 [0/90] oraz matę szklaną CSM450. Zastosowano piankę poliuretanową PUR S-42 (rys. 1, 2).

Segmenty nakładki mocowane są w wolnych otworach prowadnicy typu B systemu SP-05/2, za pomocą śrub M16x80 klasy 8.8, poprzez prostokątne podkładki z gumy EPDM 70°ShA oraz podkładki stalowe prostokątne typu A według katalogu firmy Stalprodukt. Pełny opis nakładki CFR2, znaleźć można w pracach [15, 16, 17, 21].

Rys. 1. Segment nakładki CFR2 Fig. 1. Segment of CFR2 overlay

3. Modele numeryczne badanych układów

W wirtualnych testach zderzeniowych wykorzystano model pojazdu Geo Metro opracowany przez NCAC [29]. Zawiera on ponad 33 tys. elementów skończonych (ponad 35 tys. węzłów). Na podstawie wyników wstępnych testów zderzeniowych (m.in. uderzenie centralne i pod kątem 20° pojazdu w sztywną ścianę) stwierdzono, że konieczne są modyfikacje modelu pojazdu: m.in. zmiana modelu opisującego pracę opon, korekta modelu zawieszenia, wprowadzenie dynamicznej relaksacji (grawitacja) przed rozpoczęciem procesu zderzenia pojazdu z barierą, korekta opcji modeli kontaktu oraz kart kontrolnych.

Testowane odcinki bariery SP-05/2 (prosta i w łuku) posiatkowane zostały przy użyciu 4-węzłowych powłokowych elementów skończonych o sformułowaniu Belytscho-Tsay, z całkowaniem zredukowanym w płaszczyźnie elementu (sformułowanie ELFORM_2 według [11, 12]). Grunt, w którym osadzone są słupki SIGMA bariery SP-05/2, odwzorowano poprzez walce o promieniu 1.00 m i wysokości 1.30 m, posiatkowane elementami bryłowymi o topologii HEX8 oraz PENTA6, z przypisanym sformułowaniem ELFORM_1 (elementy bryłowe ze stałym całowaniem) [11, 12]. Elementy kompozytowe nakładki CFR2 opisano przy użyciu 4-węzłowych powłokowych elementów skończonych o sformułowaniu Belytscho-Tsay, z całkowaniem zredukowanym w płaszczyźnie elementu (ELFORM_2) i po jednym punkcie

całkowania na warstwę laminatu [11, 12]. Piankę poliuretanową opisano 8-węzłowymi elementami bryłowymi ze sformułowaniem ELFORM 1 [11, 12].

Połączenia śrubowe pomiędzy segmentami prowadnicy opisano za pomocą elementów belkowych z przypisanymi własnościami sztywnościowymi (model materiałowy *MAT_68_NONLINEAR_PLASTIC_DISCRETE_BEAM [11, 12]), uzyskanymi z modelowania 3D złączy śrubowych [14]. Pozostałe połączenia śrubowe nakładki CFR2 z systemem SP-05/2, zamodelowano za pomocą *CONSTRAINED_GENERALIZED_WELD_SPOT [11, 12], z odpowiednimi nośnościami wynikającymi z klasy wytrzymałości śrub [2].

Do opisu właściwości materiałowych stali S235JR wykorzystano model *MAT_024_PIECEWISE_LIEAR_PLASTICITY, będący modelem sprężysto-plastycznym z umocnieniem izotropowym i kryterium niszczenia bazującym na efektywnych odkształceniach plastycznych [11, 12]. Stałe materiałowe zaczerpnięto z certyfikatu jakości produktu firmy Stalprodukt [16, 18, 21].

Laminat nakładki CFR2 opisano modelem materiałowym liniowo-sprężysto-kruchym *MAT_054_ENCHANCED_COMPOSITE_DAMAGE, z kryterium niszczenia Chang-Chang [11, 12]. Model ten jest dedykowany głównie do kompozytów wzmocnionych jednokierunkowo, jednak jak wykazano w pracy [24], można go stosować także do laminatów wzmocnionych tkaninami. Stałe sprężystości i wytrzymałości lamin materiału kompozytowego nakładki uzyskano z badań eksperymentalnych identyfikacyjnych przeprowadzonych w Laboratorium Badań Materiałów i Konstrukcji Katedry Mechaniki i Informatyki Stosowanej Wydziału Mechanicznego Wojskowej Akademii Technicznej [16, 18, 21]. Pianę poliuretanową opisano modelem materiałowym *MAT_026_HONEYCOMB [11, 12]. Stałe materiałowe piany poliuretanowej PUR S-42 zaczerpnięto z pracy [8].

Szczegóły modelowania badanych układów, znaleźć można w pracach [16, 18, 21].

4. Bazowe wirtualne testy zderzeniowe TB11

Bazowymi wirtualnymi testami zderzeniowymi nazwano testy TB11 dla bariery w łuku o promieniu 150 m bez nakładki (kod TB11/CB/20) i z nakładką CFR2 (kod TB11/CBC/20). Wyniki symulacji bazowych testów zderzeniowych przedstawiono na rys. 3 i 4. Na rys. 3 widoczne jest niedopuszczalne zachowanie pojazdu, który ulega zarzuceniu [25, 26]. Wirtualny test zderzeniowy TB11/CB/20 nie zapewnia przyjęcia bariery SP-05/2 w łuku o promieniu 150 m. Zastosowanie nakładki CFR2 (rys. 4), zapewnia prawidłowe wyprowadzenie pojazdu.

Rys. 3. Animacja testu zderzeniowego TB11/CB/20 – widok z góry Fig. 3. Animation of TB11/CB/20 crash test – top view

Rys. 4. Animacja testu zderzeniowego TB11/CBC/20 – widok z góry Fig. 4. Animation of TB11/CBC/20 crash test – top view

Na rys. 5 przedstawiono porównanie bilansów energetycznych powyższych testów. Dla testu TB11/CB/20, w wyniku kolizji pochłonięciu ulega 95% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.195 MJ. Dla testu TB11/CBC/20, w wyniku kolizji pochłonięciu ulega 79% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.161 MJ. Prędkość rezydualna pojazdu w momencie zakończenia interakcji pojazdu z barierą wynosi 47.5 km/h.

W tabeli 2 zestawiono wyniki bazowych wirtualnych testów zderzeniowych TB11/CB/20 i TB11/CBC/20. Wpływ nakładki CFR2 na przebieg testu zderzeniowego TB11 dla bariery w łuku jest znaczny. W pierwszej fazie testu (czas poniżej 0.45 s) występuje nieznaczna redukcja energii kinetycznej oraz nieznaczny wzrost energii wewnętrznej w porównaniu z barierą niezmodyfikowaną (bez nakładki CFR2). W dalszej części procesu, energia kinetyczna i energia wewnętrzna utrzymują się na stałym poziomie (test TB11/CBC/20), co gwarantuje przyjęcie testu zderzeniowego.

Dla obydwu wariantów testów wartości parametry ASI i THIV odpowiadają poziomowi intensywności zderzenia analizowanej bariery ochronnej (poziom A [25, 26]). W przypadku testu TB11/CBC/20 następuje zmniejszenie szerokości pracującej o 15.3%. Jednocześnie o 47.2% zostaje zmniejszona długość interakcji pojazdu z barierą.

Rys. 5. Porównanie bilansów energetycznych dla testów TB11/CB/20 (linie ciągłe) i TB11/CBC/20 (linie przerywane) Fig. 5. Comparison of energy balances of TB11/CB/20 (solid lines) and TB11/CBC/20 (dashed lines) tests

5. Analizowane parametry wirtualnego testu zderzeniowego TB11

Na łukach dróg kąt zderzenia pojazdu z barierą może ulec zmniejszeniu lub zwiększeniu w stosunku do kąta normowego [25, 26]. Zmianom mogą ulec także warunki atmosferyczne wpływające na stan nawierzchni drogi. Aby wykazać celowość stosowania nakładki CFR2, przeprowadzono serię wirtualnych testów zderzeniowych TB11, analizując wpływ wybranych parametrów układu. W tabeli 1 zestawiono testy objęte analizami.

Testy TB11/CB/20 i TB11/CBC/20 dotyczą suchej nawierzchni drogi i pobocza, dla których współczynnik tarcia pomiędzy ogumieniem koła a nawierzchnią wynosi 0.90, a między ogumieniem koła i poboczem wynosi 0.68 [30]. Dla mokrej nawierzchni drogi i pobocza, współczynniki te przyjmują wartości odpowiednio 0.60 i 0.55 [30].

6. Wpływ kąta zderzenia

Wyniki symulacji testu zderzeniowego TB11/CB/10 przedstawiono na rys. 6. W trakcie kolizji występują dwa zderzenia, z czego drugie nie jest brane pod uwagę, zgodnie z [25, 26]. Uszkodzenia oraz deformacja pojazdu jest niewielka i dotyczy tylko przedniego zestawu kołowego. Wyniki symulacji testu zderzeniowego TB11/CBC/10 przedstawiono na rys. 7. W tym przypadku także występują dwa zderzenia, a efektem kolizji jest również uszkodzenie tylko przedniego zestawu kołowego.

Tabela 1. Testy objęte analizami wpływu wybranych parametrów Table 2. The tests covered by analysis of influence of selected parameters

Kod układu/testu	Onis układu	Cel badań		
	Opis ukidud	numerycznych		
TB11/CB/10 TB11/CB/30	układ samochód/grunt/bariera, badanie TB11, bariera w łuku bez nakładki, kąt zderzenia 10° i 30°	wpływ kąta zderzenia		
TB11/CBC/10 TB11/CBC/30	układ samochód/grunt/nakładka/bariera, badanie TB11, bariera w łuku z nakładką, kąt zderzenia 10° i 30°	wpływ kąta zderzenia		
TB11/CB/20_Wet	układ samochód/grunt/bariera, zmodyfikowane badanie TB11, bariera w łuku bez nakładki, kąt zderzenia 20°, mokra nawierzchnia i pobocze	wpływ mokrej nawierzchni i pobocza		
TB11/CBC/20_Wet	układ samochód/grunt/nakładka/bariera, zmodyfikowane badanie TB11, bariera w łuku z nakładką, kąt zderzenia 20°, mokra nawierzchnia i pobocze	wpływ mokrej nawierzchni i pobocza		

Rys. 6. Animacja testu zderzeniowego TB11/CB/10 – widok z góry Fig. 6. Animation of TB11/CB/10 crash test – top view

Rys. 7. Animacja testu zderzeniowego TB11/CBC/10 – widok z góry Fig. 7. Animation of TB11/CBC/10 crash test – top view

Na rys. 8 przedstawiono porównanie bilansów energetycznych powyższych testów. Dla testu TB11/CB/10, w wyniku kolizji pochłonięciu ulega 42.9% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.067 MJ. Prędkość rezydualna pojazdu w momencie zakończenia interakcji pojazdu z barierą wynosi 83.9 km/h.

Dla testu TB11/CBC/10, w wyniku kolizji pochłonięciu ulega 44.9% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.070 MJ. Prędkość rezydualna pojazdu w momencie zakończenia interakcji pojazdu z barierą wynosi 84.6 km/h.

W tabeli 2 zestawiono wyniki przeprowadzonych wirtualnych testów zderzeniowych TB11/CB/10 i TB11/CBC/10. Dla kąta zderzenia 10° wpływ nakładki na wartości większości parametrów zderzenia oraz samo zjawisko zderzenia, jest mały. Istotnej zmianie ulega jedynie długość interakcji pojazdu z barierą (zmniejszenie o 21.8%). Ponadto, wprowadzenie nakładki powoduje zmniejszenie o 11.3% ASI i o 3.7% szerokości pracującej oraz zwiększenie o 5.9% THIV i o 0.8% prędkości rezydualnej.

Wyniki symulacji testu zderzeniowego TB11/CB/30 przedstawiono na rys. 9. Na rys. 10 przedstawiono wyniki symulacji testów zderzeniowych TB11/CBC/30. W przypadku bariery bez nakładki następuje wbicie się pojazdu w barierę i jego zablokowanie. Zastosowanie nakładki CFR2 także powoduje wbicie się pojazdu w barierę, po czym następuje odbicie pojazdu i jego zarzucenie. W obydwu przypadkach zniszczenia pojazdu są znaczne. Integralność systemu powstrzymywania jest nienaruszona (pomimo znacznych uszkodzeń nakładki w przypadku testu TB11/CBC/30).

Rys. 9. Animacja testu zderzeniowego TB11/CB/30 – widok z góry Fig. 9. Animation of TB11/CB/30 crash test – top view

Rys. 10. Animacja testu zderzeniowego TB11/CBC/30 - widok z góry

Fig. 10. Animation of TB11/CBC/30 crash test - top view

Na rys. 11 przedstawiono porównanie bilansów energetycznych powyższych testów. Dla testu TB11/CB/30, w wyniku kolizji pochłonięciu ulega 99% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.232 MJ. Dla testu TB11/CBC/30, w wyniku kolizji pochłonięciu ulega 98% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.251 MJ.

Rys. 11. Porównanie bilansów energetycznych dla testów TB11/CB/30 (linie ciągłe) i TB11/CBC/30 (linie przerywane) Fig. 11. Comparison of energy balances of TB11/CB/30 (solid lines) and TB11/CBC/30 (dashed lines) tests

W tabeli 2 zestawiono wyniki przeprowadzonych wirtualnych testów zderzeniowych TB11/CB/30 i TB11/CBC/30. Dla kąta zderzenia 30° zastosowanie nakładki CFR2 powoduje zwiększenie o 19.2% ASI i o 13.4% THIV oraz zmniejszenie o 2% szerokości pracującej i o 27.1% długości interakcji pojazdu z barierą. Zastosowanie nakładki CFR2 powoduje usztywnienie bariery.

7. Wpływ mokrej nawierzchni i mokrego pobocza

Wyniki symulacji testu zderzeniowego TB11/CB/20_Wet przedstawiono na rys. 12. Następuje zatrzymanie pojazdu przez barierę i jego zarzucenie. Uszkodzenia pojazdu są dość duże. Wyniki symulacji testu zderzeniowego TB11/CBC/20_Wet przedstawiono na rys. 13. Wyprowadzenie pojazdu jest prawidłowe. Uszkodzenia pojazdu są niewielkie i dotyczą głównie przedniego zestawu kołowego.

Wirtualne testy zderzeniowe dla bariery w łuku bez nakładki i z nakładką CFR2, w warunkach suchej nawierzchni drogi i pobocza, dotyczą odpowiednio testów TB11/CB/20 i TB11/CBC/20.

Rys. 12. Animacja testu zderzeniowego TB11/CB/20_Wet – widok z góry Fig. 12. Animation of TB11/CB/20_Wet crash test – top view

Rys. 13. Animacja testu zderzeniowego TB11/CBC/20_Wet – widok z góry Fig. 13. Animation of TB11/CBC/20_Wet crash test – top view

W tabeli 2 zestawiono wyniki przeprowadzonych wirtualnych testów zderzeniowych TB11/CB/20_Wet i TB11/CBC/20_Wet.

Porównanie bilansów energetycznych dla warunków suchej nawierzchni drogi i pobocza przedstawiono na rys. 5. Na rys. 14 przedstawiono porównanie bilansów energetycznych testów TB11/CB/20_Wet i TB11/CBC/20_Wet. Dla testu TB11/CB/20_Wet, w wyniku kolizji pochłonięciu ulega 92.1% energii kinetycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.199 MJ. Dla testu TB11/CBC/20_Wet, w wyniku kolizji pochłonięciu ulega 75.0% energii kinematycznej pojazdu, a energia pochłonięta w wyniku niszczenia materiałów wynosi 0.163 MJ.

Dla testu zderzeniowego bez nakładki, zarówno dla warunków suchych, jak i mokrych następuje niespełnienie podstawowego kryterium przyjęcia testu, jakim jest prawidłowe wyprowadzenie pojazdu przez barierę. Wprowadzenie nakładki CFR2 powoduje przyjęcie testu zderzeniowego zgodnie z [3, 4]. Pojazd jest prawidłowo wyprowadzony po interakcji z barierą, na co korzystnie wpływa zwiększenie o 35% prędkości rezydualnej w stosunku do warunków suchej nawierzchni i pobocza.

Rys. 14. Porównanie bilansów energetycznych dla testów TB11/CB/20_Wet (linie ciągłe) i TB11/CBC/20_Wet (linie przerywane) Fig. 14. Comparison of energy balances of TB11/CB/20_Wet (solid lines) and TB11/CBC/20_Wet

Tabela 2. Porównanie wyników analizowanych wirtualnych testów zderzeniowych Table 2. Comparison of results of analysed virtual crash tests

Układ dynamiczny	ASI	THIV	VCDI	W	L^{2}	PPO ³⁾	E ⁴⁾	$v_r^{(5)}$
		[km/h]		[m]	[m]		[MJ]	[km/h]
TB11/CB/10 ¹⁾	0.62	12.62	RF0000000	0.27	5.05	tak	0.181	83.9
TB11/CB/20 ¹⁾	0.85	20.91	RF0010000	0.85	12.3	nie	0.195	-
TB11/CB/20_Wet	0.87	17.20	RF0010000	0.80	12.1	nie	0.199	-
TB11/CB/30 ¹⁾	0.78	23.29	RF1010001	1.51	8.50	nie	0.232	-
TB11/CBC/10 ¹⁾	0.55	13.36	RF0000000	0.26	3.95	tak	0.154	84.6
TB11/CBC/20 ¹⁾	0.80	19.21	RF0010110	0.72	6.50	tak	0.161	47.5
TB11/CBC/20_Wet	0.78	16.71	RF0010100	0.77	5.95	tak	0.163	64.3
TB11/CBC/30 ¹⁾	0.93	26.40	RF1010001	1.48	6.20	nie	0.251	-

¹⁾ wyniki dla warunków suchej nawierzchni drogi i pobocza

²⁾ długość odcinka interakcji pojazdu z barierą

³⁾ poprawne zachowanie pojazdu w polu odbicia

⁴⁾ energia pochłonięta w wyniku niszczenia materiałów

⁵⁾ prędkość rezydualna

(dashed lines) tests

8. Podsumowanie

W pracy przedstawiono wpływ wybranych parametrów, tj. kąta uderzenia pojazdu oraz suchej/mokrej nawierzchni drogi i pobocza, na przebieg wirtualnego testu zderzeniowego TB11 dla bariery SP-05/2 w łuku poziomym wklęsłym o promieniu 150 m. Dla normowego kąta zderzenia 20°, zarówno w warunkach suchych, jak i mokrych, zastosowanie nakładki

kompozytowo-pianowej CFR2, powoduje spełnienie normowych kryteriów przyjęcia testu zderzeniowego TB11.

Ponadto, z przeprowadzonych badań wirtualnych typu TB11 nt. wpływu kąta zderzenia pojazdu z barierą SP-05/2 w łuku poziomym wklęsłym o promieniu 150 m, klasy N2-W4-A, wynikają następujące wnioski:

- zwiększenie kąta zderzenia pojazdu z barierą w łuku bez nakładki powoduje zwiększenie wartości parametrów ASI, THIV, VCDI, W, z wyjątkiem wartości ASI dla kąta 30°. Dla kątów zderzenia 10°, 20°, 30° wartości ASI i THIV spełniają warunki przyjęcia badania zderzeniowego (ASI ≤ 1.0, THIV ≤ 33 km/h). Szerokość pracująca przekracza wartość normową W4 ≤ 1.3 m tylko dla kąta 30°.
- 2) zwiększenie kąta zderzenia pojazdu z barierą w łuku z nakładką powoduje zwiększenie wartości parametrów ASI, THIV, VCDI, W. Dla kątów zderzenia 10°, 20°, 30° wartości ASI i THIV spełniają warunki przyjęcia badania zderzeniowego (ASI ≤ 1.0, THIV ≤ 33 km/h). Szerokość pracująca przekracza wartość normową W4 ≤ 1.3 m tylko dla kąta 30°.
- 3) dla kąta zderzenia 10° wpływ nakładki na wartości parametrów zderzenia jest mały. Dla kąta zderzenia 20° nakładka powoduje poprawne wyprowadzenie pojazdu na jezdnię i badanie TB11 jest przyjęte. Ponadto, nakładka CFR2 wpływa na znaczne obniżenie położenia prowadnicy bariery w strefie zderzenia, co eliminuje ryzyko uderzenia prowadnicy w kabinę pojazdu. Dla kąta 30° nakładka usztywnia barierę, powoduje znaczny wzrost parametrów ASI i THIV w porównaniu z kątem 20°, o odpowiednio 19% i 13% oraz odbija i zarzuca pojazd.

Z przeprowadzonych badań wirtualnych typu TB11 nt. wpływu mokrej nawierzchni i mokrego pobocza, przy zderzeniu pojazdu Geo Metro z barierą SP-05/2 w łuku poziomym wklęsłym o promieniu 150 m, klasy N2-W4-A, wynikają następujące wnioski:

- Mokra nawierzchnia i mokre pobocze w porównaniu do suchej nawierzchni i pobocza, wpływają w niewielkim stopniu na przebieg badania typu TB11 w odniesieniu do bariery bez nakładki, w łuku poziomym wklęsłym o promieniu 150 m (rys. 3 i tabela 2). W warunkach mokrych, w porównaniu do warunków suchych, następuje zwiększenie ASI o 2.4% oraz zmniejszenie THIV o 17.7%, szerokości pracującej o 5.9% i długości interakcji pojazdu z barierą o 1.6%. Badanie zderzeniowe nie może być przyjęte w obydwu przypadkach, suchym i mokrym.
- 2) Mokra nawierzchnia i mokre pobocze w porównaniu do suchej nawierzchni i pobocza, poprawiają niektóre parametry badania typu TB11 w odniesieniu do bariery z nakładką CFR2, w łuku poziomym wklęsłym o promieniu 150 m. Badanie zderzeniowe jest przyjęte w obydwu przypadkach. Jednym z głównych kryteriów przyjęcia testu zderzeniowego jest prawidłowe wyprowadzenie pojazdu na jezdnię, dlatego poprawienie parametrów, które pośrednio na to wpływają jest pożądane (np. długość interakcji pojazdu z barierą, prędkość rezydualna, VCDI). W przypadku mokrej nawierzchni i mokrego pobocza, w porównaniu do suchej nawierzchni i pobocza, długość interakcji pojazdu z barierą ulega zmniejszeniu o 8.4%, a prędkość rezydualna ulega istotnemu zwiększeniu o 35%, co wpływa korzystnie na wyprowadzenie pojazdu na jezdnię. Ponadto, zmniejszenie odległości pomiędzy dolną krawędzią prawego okna a górną krawędzią lewego okna jest ≤3% (dla bariery bez nakładki zmiana jest większa, w zakresie 3÷10%).

Finansowanie

Praca wykonana w ramach projektu badawczego PBS1/B6/14/2012 (akronim ENERBAR), finansowanego w latach 2013–2015 przez Narodowe Centrum Badań i Rozwoju.

Literatura

- [1] Atahan A O. Finite element simulation of a strong-post W-beam guardrail system. Simulation. 10 (2002); 78: 587-599.
- [2] Biegus A. Połączenia śrubowe. Wydawnictwo Naukowe PWN. 1997; Warszawa-Wrocław.
- [3] Borkowski W, Hryciów Z, Rybak P, WysockI J. Analiza skuteczności betonowych barier ochronnych na łuku drogi. Przegląd Mechaniczny. Rok LXXI, Z. 7-8/2012: 21–24
- [4] Borkowski W, Hryciów Z, Rybak P, Wysocki J. Numerical simulation of the standard TB11 and TB32 tests for a concrete safety barrier. J. KONES Powertrain and Transport. 4 (2010); 17: 63–71.
- [5] Borkowski W, Hryciów Z, Rybak P, Wysocki J. Testing the results of a passenger vehicle collision with a rigid barrier. J. KONES Powertrain and Transport. 1 (2010); 17: 51–57.
- [6] Borovinsek M, Vesenjak M, Ulbin M, Ren Z. Simulating the impact of truck on roadsafety barrier. Journal of Mechanical Engineering. (2006) 2; 52: 101–111.
- [7] Borovinsek M, Vesenjak M, Ulbin M, Ren Z. Simulation of crash test for high containment levels of road safety barriers. Engineering Failure Analysis. 14 (2007): 1711-1718.
- [8] Dziewulski P. Examination of Selected Structures to Improve Energy Intensity of Road Safety Barriers (in Polish). PhD Thesis, Military University of Technology. 2010; Warsaw.
- [9] Dziewulski P. Numerical analysis of car road barrier crash tests [in Polish]. Proc. III Symp. on Advances in Manufacturing Technologies and Machinery Structures, Kazimierz Dolny, Poland. 2009: 43-49.
- [10] Goubel C, Di Pasquale E, Massenzio M, Ronel S. Comparison of crash tests and simulations for various vehicle restraint systems. 7th European LS-DYNA Conference. DYNAmore, GmbH, CD Proc. 2009: 1–12.
- [11] Hallquist J O. LS-DYNA Keyword User's Manual. Livermore Sofware Technology Corporation, Livermore, CA, USA. May 2007.
- [12] Hallquist J O. LS-DYNA Theory Manual. Livermore Sofware Technology Corporation, Livermore, CA, USA. March 2006.
- [13] Kiczko A, Niezgoda T, Nowak J, Dziewulski, P. Numerical implementation of car impact into the modified road barrier. J. KONES Powertrain and Transport. 3 (2010); 17: 189-196.
- [14] Klasztorny M, Kiczko A, Nycz D. Modelowanie numeryczne i symulacja rozciągania połączenia śrubowego segmentów prowadnicy B bariery drogowej. 13. Konf. Nauk.-Tech. Techniki Komputerowe w Inżynierii, Licheń Stary. 2014: 77-78.
- [15] Klasztorny M, Niezgoda T, Romanowski R, Nycz D, Rudnik D, Zielonka K. Nakładka na prowadnicę bariery ochronnej na łuku drogi. Zgłoszenie patentowe UP RP. 6.10.2014.

- [16] Klasztorny M, Nycz D B, Romanowski R K. Rubber/foam/composite overlay onto guide B of barrier located on road bend. The Archives of Automotive Engineering. 3 (2015); 69: 65-86.
- [17] Klasztorny M, Romanowski R K, Nycz D B. Nakładka kompozytowo-pianowa na prowadnicę B drogowej bariery ochronnej w łuku poziomym wklęsłym – część 1: Projekt nakładki na prowadnicę bariery SP-05/2. Materiały kompozytowe. 3/2015: 36-38.
- [18] Klasztorny M, Romanowski R K, Nycz D B. Nakładka kompozytowo-pianowa na prowadnicę B drogowej bariery ochronnej w łuku poziomym wklęsłym – część 2: Modelowanie i symulacja testów zderzeniowych. Materiały kompozytowe. 4/2015: 8-10.
- [19] Nasution R P, Siregar R A, Fuad K, Adom A H. The effect of ASI (Acceleration Severity Index) to different crash velocities. Int. Conf. on Applications and Design in Mechanical Engineering (ICADME), CD Proc. 1–6. Malaysia. 11–13 October 2009.
- [20] Niezgoda T, Barnat W, Dziewulski P, Kiczko A. Numerical modelling and simulation of road crash tests with the use of advanced CAD/CAE systems. Journal of KONBiN. 3 (2012); 23: 95-108.
- [21] Nycz D. Modelowanie i badania numeryczne testów zderzeniowych bariery klasy N2-W4-A na łukach dróg. Wydawnictwo WAT. 2015; Warszawa.
- [22] Ren Z, Vesenjak M. Computational and experimental crash analysis of the road safety barrier. Engineering Failure Analysis. 12 (2005): 963-973.
- [23] Vesenjak M, Borovinšek M, Ren Z. Computational simulations of road safety barriers using LS-DYNA. 6. LS-DYNA Anwenderforum. DYNAmore, GmbH, Frankenthal, CD Proc. 2007: 1-8.
- [24] Wade B, Feraboli P, Osborne M. Simulating laminated composites using LS-DYNA material model MAT54 part I: [0] and [90] playsingle-element investigation [cited 2014 Sep 22]. Available from:
- https://depts.washington.edu/amtas/events/jams_12/papers/paper-feraboli.pdf [25] PN-EN 1317-1:2010. Systemy ograniczające drogę – część 1: Terminologia i ogólne
- kryteria metod badań. [26] PN FN 1317 2:2010. Systemy, ograniczające droge – cześć 2: Klasy, działania, kryteria
- [26] PN-EN 1317-2:2010. Systemy ograniczające drogę część 2: Klasy działania, kryteria przyjęcia badań zderzeniowych i metody badań barier ochronnych i balustrad.
- [27] Stalowe bariery ochronne. Stalprodukt S.A. 2006; Bochnia.
- [28] System N2 W4 (SP-5/2). Stalprodukt S.A. 2011; Bochnia.
- [29] Vehicle Models, NCAC, USA, January 7, 2013. Available from: http://www.ncac.gwu.edu/vml/models.html
- [30] Tire friction and rolling resistance coefficients, Denmark, July 1, 2013. Available from: http://hpwizard.com/tire-friction-coefficient.html