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Abstract

Presented paper discusses two different nonlinear approaches to precrash velocity determination 
for vehicles from Intermediate Car Class. Data that was used to perform analyses introduced in 
this paper was taken from National Highway Traffic Safety Administration (NHTSA) database. Such 
database is comprised of substantial number of crash cases and main focus was put on frontal 
impacts. 
Hitherto used energy methods are based on linear model which proves to be inaccurate and 
producing significant errors.  Presented considerations concern the inverse system and tensor 
product of Legendre polynomials. The focus of those methods is to establish the value of nonlinear 
coefficient bk which is the slope factor of precrash velocity Vt and deformation ratio Cs function.
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Nomenclature: 
EES – Equivalent Energy Speed [m/s]
NHTSA – National Highway Traffic Safety Administration	
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Cs 	 – deformation ratio [m]
C1–C6 	– deformation coefficients
E/M 	 – specific collision energy [J/kg]
Lt 	 – dent zone width [m]
Vt 	 – vehicle speed [m/s]
Wdef 	 – work of deformation [J]
bk 	 – constant slope factor [m/s/m]
bsg 	 – limit speed [m/s]
m 	 – weight of car [kg]
n 	 – number of cases [-]
error 	 – EES estimation error [-]
A [N/m], B [N/m2], G [N], C [m], α [m], β [m2] – coefficient

1. Introduction

In recent years the development of methods for precrash velocity determination seemed 
to reach a plateau. Linear models, however simple and showing great ease of use, unfortu-
nately produce significant inaccuracies, reaching up to 30% [39]. Authors focus on devel-
oping superior methods in terms of precision, based on nonlinear models, which already 
have shown promising results in the recent past [18-26]. 

Presented paper discusses another two nonlinear approaches to precrash velocity deter-
mination in Intermediate Car Class. These considerations concern the inverse system and 
tensor product of Legendre polynomials [1,3]. The focus of those methods is to establish 
the value of nonlinear coefficient bk which is the slope factor. The pre-impact velocity Vt 
is a function of said coefficient and deformation ratio Cs [4,8-12,16-23,20,21,25-28,30,34-
37,39]. The Cs determines the body deformation as an arithmetic mean of deformation 
depth [23] in specific points C1 to C6 [13-15,23,26,34,35,37,39].

Once the above parameters are established, the deformation work can be defined. This 
quantity is then directly used to find the value of EES from the following equation:
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where:  − Equivalent Energy Speed,  − deformation work,  − vehicle mass. 
 
 The EES [6,39,39] defines the amount of energy to deform the vehicle [7,24,38,32,33] while 
impacting a rigid obstacle, i.e. only plastic deformations occur and the entire kinetic energy 
accumulated by the vehicle is transferred to deformation work. This is then used as a baseline to 
find the actual velocity of a vehicle in a real life accident and asses if, for example, collision 
avoiding maneuvers has been applied [2,23] or if the vehicle speed was properly adjusted according 
to traffic conditions [34]. Analyzed set of cases focuses on frontal impacts [35,36]. 

 The first method of EES determination is based on a simple observation, that coefficient  
dependent on  behaves similarly to function  . This led Authors to consideration of inverse 

systems:  Application of the least square approximation gives much better results than 
other methods used in this field. 

where: EES Equivalent Energy Speed, W deformation work, m vehicle mass.

The EES [6,39,39] defines the amount of energy to deform the vehicle [7,24,38,32,33] 
while impacting a rigid obstacle, i.e. only plastic deformations occur and the entire kinetic 
energy accumulated by the vehicle is transferred to deformation work. This is then used 
as a baseline to find the actual velocity of a vehicle in a real life accident and asses if, for 
example, collision avoiding maneuvers has been applied [2,23] or if the vehicle speed was 
properly adjusted according to traffic conditions [34]. Analyzed set of cases focuses on 
frontal impacts [35,36].

The first method of EES determination is based on a simple observation, that coefficient 
bk dependent on Cs behaves similarly to function . This led Authors to consideration of 
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inverse systems: 1, , , . Application of the least square approximation gives much better 
results than other methods used in this field.

The second method focuses on Legendre polynomials, which are orthogonal function in 
the domain of [–1,1]. For the purpose of Octave implementation, the set of Legendre poly-
nomials was rescaled and renumbered. Finally, the Legendre polynomials tensor product 
is considered and the least square method is applied.

2. Inverse system method description

Assuming that there are given points (xn,yn)N
n=1 and a function set (fm)M

m=1. The goal is to 
find coefficients (am)M

m=1, that minimize the value of: 
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 This problem is called the least-square function approximation and is very well covered in 
the literature [2]. The first author of this solution was not established, since both Carl Gauss and 
Adriena-Marie Legendre were working on the topic. 
 In order to find the minimum, the function has to be differentiated with respect to 
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It is convenient to use the matrix notation: 

 

(4) 

  
 It is worth noticing that matrix M on LHS (2) is symmetric in sense, that 

 for arbitrary . This obvious observation allows to speed up the 
calculations almost twice. In that stage, the solution of least square problem is down to solving of 
the  matrix and making following observations, on condition that it is inverse: 

 

(5) 

  
 Returning to the original problem of finding the  as a function of , the set of points 

 is adjacent to , where  is the number of crash tests. As shown in the 
preceding sections, the following is true: 

This problem is called the least-square function approximation and is very well covered 
in the literature [2]. The first author of this solution was not established, since both Carl 
Gauss and Adriena-Marie Legendre were working on the topic.

In order to find the minimum, the function has to be differentiated with respect to  
ak, k = 1, …, M obtaining a series of equations

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 83, No. 1, 2019 

 
 

3 
 

 The second method focuses on Legendre polynomials, which are orthogonal function in the 
domain of . For the purpose of Octave implementation, the set of Legendre polynomials was 
rescaled and renumbered. Finally, the Legendre polynomials tensor product is considered and the 
least square method is applied. 
 
 

2. Inverse system method description 
 
 Assuming that there are given points  and a function set . The goal is to 
find coefficients , that minimize the value of:  

 
(2) 

  
 This problem is called the least-square function approximation and is very well covered in 
the literature [2]. The first author of this solution was not established, since both Carl Gauss and 
Adriena-Marie Legendre were working on the topic. 
 In order to find the minimum, the function has to be differentiated with respect to 

 obtaining a series of equations 

 
(3) 

  
It is convenient to use the matrix notation: 

 

(4) 

  
 It is worth noticing that matrix M on LHS (2) is symmetric in sense, that 

 for arbitrary . This obvious observation allows to speed up the 
calculations almost twice. In that stage, the solution of least square problem is down to solving of 
the  matrix and making following observations, on condition that it is inverse: 

 

(5) 

  
 Returning to the original problem of finding the  as a function of , the set of points 

 is adjacent to , where  is the number of crash tests. As shown in the 
preceding sections, the following is true: 

It is convenient to use the matrix notation:

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 83, No. 1, 2019 

 
 

3 
 

 The second method focuses on Legendre polynomials, which are orthogonal function in the 
domain of . For the purpose of Octave implementation, the set of Legendre polynomials was 
rescaled and renumbered. Finally, the Legendre polynomials tensor product is considered and the 
least square method is applied. 
 
 

2. Inverse system method description 
 
 Assuming that there are given points  and a function set . The goal is to 
find coefficients , that minimize the value of:  

 
(2) 

  
 This problem is called the least-square function approximation and is very well covered in 
the literature [2]. The first author of this solution was not established, since both Carl Gauss and 
Adriena-Marie Legendre were working on the topic. 
 In order to find the minimum, the function has to be differentiated with respect to 

 obtaining a series of equations 

 
(3) 

  
It is convenient to use the matrix notation: 

 

(4) 

  
 It is worth noticing that matrix M on LHS (2) is symmetric in sense, that 

 for arbitrary . This obvious observation allows to speed up the 
calculations almost twice. In that stage, the solution of least square problem is down to solving of 
the  matrix and making following observations, on condition that it is inverse: 

 

(5) 

  
 Returning to the original problem of finding the  as a function of , the set of points 

 is adjacent to , where  is the number of crash tests. As shown in the 
preceding sections, the following is true: 

It is worth noticing that matrix M on LHS (2) is symmetric in sense, that M(k,m) = M(m,k) 
for arbitrary k, m = 1, …M. This obvious observation allows to speed up the calculations 
almost twice. In that stage, the solution of least square problem is down to solving of the    
M matrix and making following observations, on condition that it is inverse:
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Returning to the original problem of finding the bk as a function of Cs, the set of points  
(xn,yn)N

n=1 is adjacent to (Cs(n), bk(n))N
n=1, where n is the number of crash tests. As shown 

in the preceding sections, the following is true:
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The solution has the following form: 

 

(7) 

  
Whereas the function, that best approximates given points is of following form: 
 

 
(8) 

  
 The rest of the procedure of precrash velocity determination is standard and was already 
discussed in [22], [24]. As a quick reminder, the subsequent coefficients are defined (with emphasis 
on crash test number  dependence): 
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where m is the vehicle mass, bgs = 3.05  is the speed limit and Lt is the width of dent zone. 
This yields following relations:
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Figure 1 presents the approximation of the inverse method  

 
 
 

Figure 1. Inverse system least square approximation of . 

For comparison, Figure 2 presents the same data range, but with linear approximation. 
 
 
 

Figure 2. Linear least square approximation of . 
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 There is no doubt that the nonlinear model is the superior one. Figures 3 and 4 present the 
relative error for nonlinear and linear method respectively. 
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Figure 1. Inverse system least square approximation of bk [ ].

For comparison, Figure 2 presents the same data range, but with linear approximation.

Figure 2. Linear least square approximation of bk [ ].
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Figure 3. Relative error of nonlinear model (inverse system).

Figure 4. Relative error of linear model.
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The average error of the inverse method equals to 6.3355% whereas, the linear model pro-
duces average error of 7.2675%.

Finally, a plot comparing the nonlinear and linear models is presented in Figure 5. 

Figure 5. Performance of linear and nonlinear models (inverse system).

The detailed numerical data is enclosed in the Table 1.

Table 1. Detailed numerical values for inverse system method.

m Lt Cs α β Linear error Nonlinear error

1737 1943 0.076665 0.766650 0.088234 0.196983 0.030512

1685 1786 0.530300 5.303000 4.224565 0.008652 0.027690

1485 1549 0.638900 6.389000 6.129849 0.066540 0.002980

1619 1486 0.688300 6.883000 7.130574 0.121735 0.010160

1529 1351 0.635800 6.358000 6.076609 0.063555 0.002527

1542 1554 0.690900 6.909000 7.169166 0.112872 0.024523

1693 1666 0.656100 6.561000 6.461549 0.087242 0.193653

1524 1562 0.608900 6.089000 5.579293 0.042444 0.004111

1760 1595 0.427300 4.273000 2.749615 0.166005 0.114473

1650 1539 0.510300 5.103000 3.910029 0.175258 0.142013

1510 1725 0.374340 3.743400 2.424926 0.012968 0.050547
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1638 1321 0.397600 3.976000 2.374232 0.137785 0.090136

1615 1524 0.690200 6.902000 7.176259 0.119101 0.016266

1785 1605 0.572000 5.720000 4.938079 0.168352 0.176746

1772 1600 0.523200 5.232000 4.127745 0.185307 0.158408

1561 1465 0.479400 4.794000 3.488553 0.009353 0.047231

1753 1524 0.475200 4.752000 4.181716 0.018107 0.057765

1535 1321 0.465400 4.654000 3.250729 0.180548 0.132069

1497 1600 0.489000 4.890000 3.600990 0.007361 0.042738

1732 1570 0.440200 4.402000 2.947347 0.018997 0.062144

1581 1524 0.386100 3.861000 2.260915 0.129440 0.084313

1776 1451 0.313400 3.134000 1.480716 0.055415 0.041542

1558 1401 0.270900 2.709000 1.139417 0.010811 0.003042

1756 1500 0.377600 3.776000 2.174620 0.121413 0.078657

1602 1500 0.245220 2.452200 0.920680 0.111937 0.113721

1732 1750 0.486300 4.863000 3.580805 0.007422 0.031907

1674 1525 0.522000 5.220000 4.113652 0.005737 0.017776

1595 1525 0.455300 4.553000 3.350781 0.052643 0.098311

1612 1401 0.435100 4.351000 2.868393 0.155315 0.122781

1604 1372 0.431500 4.315000 2.822406 0.016728 0.045653

1778 1549 0.404500 4.045000 2.509753 0.037858 0.062735

4. Tensor product method description

Let us assume that there are given points (xn,yn,zn)N
n=1 and function family (hm)M

m=1 (func-
tions of two variables). Again, the objective is to obtain the coefficients (am)M

m=1, which 
minimize its value.

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 83, No. 1, 2019 

 
 

7 
 

1785 1605 0.572000 5.720000 4.938079 0.168352 0.176746 

1772 1600 0.523200 5.232000 4.127745 0.185307 0.158408 

1561 1465 0.479400 4.794000 3.488553 0.009353 0.047231 

1753 1524 0.475200 4.752000 4.181716 0.018107 0.057765 

1535 1321 0.465400 4.654000 3.250729 0.180548 0.132069 

1497 1600 0.489000 4.890000 3.600990 0.007361 0.042738 

1732 1570 0.440200 4.402000 2.947347 0.018997 0.062144 

1581 1524 0.386100 3.861000 2.260915 0.129440 0.084313 

1776 1451 0.313400 3.134000 1.480716 0.055415 0.041542 

1558 1401 0.270900 2.709000 1.139417 0.010811 0.003042 

1756 1500 0.377600 3.776000 2.174620 0.121413 0.078657 

1602 1500 0.245220 2.452200 0.920680 0.111937 0.113721 

1732 1750 0.486300 4.863000 3.580805 0.007422 0.031907 

1674 1525 0.522000 5.220000 4.113652 0.005737 0.017776 

1595 1525 0.455300 4.553000 3.350781 0.052643 0.098311 

1612 1401 0.435100 4.351000 2.868393 0.155315 0.122781 

1604 1372 0.431500 4.315000 2.822406 0.016728 0.045653 

1778 1549 0.404500 4.045000 2.509753 0.037858 0.062735 

 

4. Tensor product method description. 
 

Let us assume that there are given points  and function family  (functions of 
two variables). Again, the objective is to obtain the coefficients , which minimize its 
value. 

 
(20) 

 
Similarly to section 2, the issue of least square approximation is reduced to a linear solution: Similarly to section 2, the issue of least square approximation is reduced to a linear solution:
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As for the choice of function , Legendre polynomial product tensors are chosen. 
Consideration involves a sequence of polynomials  defined by a iterative formula: 

 
 (22) 

 
where  and These are Legendre polynomials from a range of . First 
Legendre polynomials are: 

 
(23) 

 
Legendre polynomials have a feature called orthogonality: 

 
(24) 

This feature is a natural consequence of Legendre polynomials being created as a result of 
orthogonalization of Gram-Schmidt function family { }. Orthogonality is valuable in 
this case, because the matrix  on left hand side (4) is closer to diagonal matrix. This results in 
smaller error of coefficients . 

  In this application, Legendre polynomials sequence is renumbered so . Then 
following is obtained: 

 
(25) 

 
where  and . To rescale the polynomials for arbitrary interval , the 
following relation is used: 

 
(26) 

 

Finally, the tensor product of two function  is described as: 

 (27) 

In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

m Lt Cs α β Linear error Nonlinear error
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As for the choice of function (hm)M
n=1, Legendre polynomial product tensors are chosen. 

Consideration involves a sequence of polynomials (Pm) defined by a iterative formula:
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In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

where P0(x) = 1 and P1(x) = x These are Legendre polynomials from a range of [–1,1]. First 
Legendre polynomials are:
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Finally, the tensor product of two function  is described as: 

 (27) 

In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

This feature is a natural consequence of Legendre polynomials being created as a result of 
orthogonalization of Gram-Schmidt function family {1,x,x2,x3, …}. Orthogonality is valuable 
in this case, because the matrix M on left hand side (4) is closer to diagonal matrix. This 
results in smaller error of coefficients (am)M

n=1.

In this application, Legendre polynomials sequence is renumbered so Qm = Pm–1. Then 
following is obtained:
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Finally, the tensor product of two function  is described as: 
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In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

where Q1(x) = 1 and Q2(x) = x. To rescale the polynomials for arbitrary interval [a,b], the fol-
lowing relation is used:
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In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

Finally, the tensor product of two function f, g is described as:
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Finally, the tensor product of two function  is described as: 
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In this application the  and  are the first five Legendre polynomials. This gives 25 
tensor products. 
 
 

In this application the (fi)5
i=1 and (gj)5

j=1 are the first five Legendre polynomials. This gives 
25 tensor products.
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5. Result of tensor product method 
  
 
The database consists of 465 crash tests. Model is created upon 80% of records and then validated. 
The program returns following values: 
 
 

 
 

 
 
 

 
The plot of Legendre polynomials tensor product approximation is presented in Figure 6. 
 

 
 
 

Figure 6. Tensor product approximation by orthogonal Legendre polynomials. 

 

It is clearly visible that it has big advantage over the linear model presented in Figure 7. 
 
 
 

Figure 7. Linear least square approximation. 

The average value of relative error is  as presented in Figure 8. Compared to 
result from section 3, this still shows an improvement in accuracy. Moreover, it is a better result 
than the linear model, where the relative error was  as shown in Figure 9. 

 
 
 

Figure 8. Value of relative error in nonlinear model. 
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The average value of relative error is  as presented in Figure 8. Compared to 
result from section 3, this still shows an improvement in accuracy. Moreover, it is a better result 
than the linear model, where the relative error was  as shown in Figure 9. 
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The plot of Legendre polynomials tensor product approximation is presented in Figure 6.

Figure 6. Tensor product approximation by orthogonal Legendre polynomials.

It is clearly visible that it has big advantage over the linear model presented in Figure 7.
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Figure 7. Linear least square approximation.

The average value of relative error is 0.058355 ≈ 5.8355% as presented in Figure 8. 
Compared to result from section 3, this still shows an improvement in accuracy. Moreover, 
it is a better result than the linear model, where the relative error was 0.069791 ≈ 6.9791% 
as shown in Figure 9.

Figure 8. Value of relative error in nonlinear model.
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Figure 9. Value of relative error in linear model.

Finally, a comparison of linear and Legendre approach is presented in Figure 10.

Figure 10. Performance of linear and nonlinear models (Legendre tensor product).
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Table 2 presents detailed data of Legendre approach.

Table 2. Detailed numerical values of the inverse method.

m Cs Vt
Expected 

linear
Expected 
nonlinear

Linear error
Nonlinear 

error

1737 0.076665 8.194444 11.758387 8.020497 0.434922 0.021227

1685 0.530300 15.638889 15.073500 15.377113 0.036153 0.016739

1485 0.638900 15.638889 15.691242 15.240526 0.003348 0.025473

1619 0.688300 15.722222 16.134815 15.072331 0.026243 0.041336

1529 0.635800 15.638889 15.705593 15.604466 0.004265 0.002201

1542 0.690900 15.500000 16.075730 15.310253 0.037144 0.012242

1693 0.656100 13.194444 15.977276 15.469597 0.210909 0.172433

1524 0.608900 15.638889 15.527939 15.569152 0.007094 0.004459

1760 0.427300 13.111111 14.331909 14.923878 0.093112 0.138262

1650 0.510300 13.222222 14.922200 15.347597 0.128570 0.160743

1510 0.374340 15.638889 14.016845 14.078595 0.103719 0.099770

1638 0.397600 13.194444 14.137679 14.570127 0.071487 0.104262

1615 0.690200 15.638889 16.143857 15.062045 0.032289 0.036885

1785 0.572000 13.111111 15.421310 15.130071 0.176202 0.153988

1772 0.523200 13.111111 15.049170 15.456106 0.147818 0.178856

1561 0.479400 15.722222 14.695674 15.064106 0.065293 0.041859

1753 0.475200 16.944444 14.687635 15.212394 0.133189 0.102219

1535 0.465400 13.111111 14.601452 14.858930 0.113670 0.133308

1497 0.489000 15.666667 14.748927 14.889826 0.058579 0.049586

1732 0.440200 15.722222 14.429095 14.901087 0.082248 0.052228

1581 0.386100 13.222222 14.073166 14.445736 0.064357 0.092535

1776 0.313400 13.083333 13.475219 12.930332 0.029953 0.011694

1558 0.270900 13.177778 13.318723 12.999929 0.010696 0.013496

1756 0.377600 13.250000 13.963279 14.356726 0.053832 0.083526

1602 0.245220 11.111111 13.111664 12.374676 0.180050 0.113721

1732 0.486300 15.691667 14.766784 15.190986 0.058941 0.031907

1674 0.522000 15.638889 15.011052 15.360886 0.040146 0.017776

1595 0.455300 16.694444 14.536943 15.053196 0.129235 0.098311

1612 0.435100 13.305556 14.399387 14.939228 0.082209 0.122781

1604 0.431500 15.611111 14.375440 14.898420 0.079153 0.045653

1778 0.404500 15.780556 14.158808 14.790568 0.102769 0.062735
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6. Conclusions

As the preceding sections clearly demonstrate, the nonlinear approach shows promising 
results. The advantage is best visible in the figures 6 and 7, where Authors put emphasis 
on the data structure itself. That is the crucial aspect when analyzing data and shows 
evident advantage of the nonlinear over the linear approach. 

When comparing these methods to the other papers done by the Authors, it does not show 
such an extensive improvement. This may indicate, that this particular approach might 
need some further development in order to achieve comparable or even lower error values. 
Nevertheless, the improvement is clearly visible, especially when considering the whole 
spectrum of examined cases. This is due to the fact of applying spline functions, which 
estimate the EES speed with larger error, although the error is distributed more evenly 
throughout the analyzed vehicles.
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