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Abstract 

The dynamic properties of the car’s suspension largely depend on the damping that results 
from the state of the shock absorbers. Their technical condition is essential for vehicle 
occupants’ comfort and traffic safety. It changes with the time and intensity of use of the 
vehicle. Therefore, adequate methods of non-destructive (diagnostic) testing of suspension 
damping have been sought for many years. The on-vehicle tests are particularly useful 
thanks to their low cost and short test duration time. The newest method is the ‘theta’ 
method which is the subject of the presented article. Notation ‘theta’ usually means relative 
damping (damping ratio) in the vibrating system. The paper asses four variants of the method. 
Two versions come from modal analysis and are also known as the ‘peak-picking method’ 
or ‘half-power method’. Two other versions are described in cited patent documentations. 
Three linear ‘quarter car’ models with their description in the frequency domain were used 
to assess mentioned variants of the ‘theta’ method. Calculations were made for two typical 
datasets corresponding to the front and rear suspension system of a medium-class motor 
car. This provided grounds for general qualitative and (within a limited scope) quantitative 
assessment of the usefulness of individual variants of the method under analysis and 
for comparisons between them. The paper is to help in choosing the variant of the ‘theta’ 
method that would most likely find the application and that might be recommended to 
manufacturers and would-be purchasers of diagnostic suspension testers. The author has 
also highlighted the importance of possible further research. 

Keywords: frequency domain analysis; quarter-car model; theta method; automotive 
suspension damping; automotive diagnostics 

1	  �Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland,  

e-mail: zbigniew.lozia@pw.edu.pl, ORCID: 0000-0002-3188-545X



6 The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022
https://doi.org/10.14669/AM/150823

1. Introduction

Damping is a very important feature of a mechanical system when one considers its dynam-
ical properties [6, 9, 10]. It changes during the time of system exploitation and intensity of 
use. There were many attempts to determine (to measure) mechanical system damping  
[9, 19, 24], including vehicle suspension damping (see works [2-4] or [5, 6, 8] as well as [11-13] 
or [14, 18, 20], and also [21-23]). It affects the comfort of passengers and traffic safety. 

For many years, efforts have been made to develop appropriate methods of testing shock 
absorbers for diagnostic purposes, especially without disassembly from a vehicle, due to 
the low cost and short duration of the test. The tests used may be classified in two groups 
(Figure 1): ‘free vibration method’ and ‘forced vibration method’ [5, 8]. In the former group, 
a record of vehicle body vibration (or, more precisely, the number of half-cycles of the vibra-
tion) caused by initial test conditions is assessed. In some variants of such an approach, the 
normal tire-road contact force is measured. This method is not recommended because of 
its very high sensitivity to the dry friction in the suspension system [25]. In the other group, 
the vehicle wheel is forced to vibrate vertically with a frequency of (16-25) Hz and then this 
frequency is gradually reduced until the vibration fades out to ‘sweep’ the frequency range 
that covers the natural frequencies of the ‘sprung mass’ and ‘unsprung mass’ supported 
by spring elements of the suspension system and pneumatic tires. In this case, the known 
fact of high sensitivity of system vibration to damping in the resonance zone is made use of. 
This group includes the variant proposed by the BOGE company [8, 13, 14], where the initial 
excitation frequency is about 16 Hz and the peak-to-peak values of vertical displacements of 
the vibration plate are assessed. Another variant of the ‘forced vibration method’ is the one 
introduced by EUSAMA (e.g. [8, 12, 20] or [21-23]). In this case, the initial excitation frequency 
is about 25 Hz and the assessment of the shock absorber condition is based on changes in 
the force exerted by the tire on the ground (i.e. tester’s vibration plate). An expanded variant 
of the EUSAMA method is the one proposed by the Hunter company, where the phase shift 
angle between the excitation (vertical motion of the vibration plate) and the force exerted by 
the tire on the plate is measured (e.g. [2, 23, 25]). 

Fig. 1. On-vehicle methods of examining shock absorbers’ condition 
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Recently, increasing importance has been attached to the approach referred to as the ‘theta’ 
method, where the relative damping (damping ratio) in the suspension system is assessed 
(e.g. [3, 4, 5] or [11, 13, 18] as well as [21]). Two versions come from modal analysis and are also 
known as the ‘peak-picking method’ or ‘half-power method’ [9]. The other two versions are 
described in cited patent documentation [3, 11, 18]. 

The author has presented a comparative assessment of four ‘theta’-type ‘forced vibration 
methods’ because more and more manufacturers of diagnostic equipment have recently 
been attempting to make use of such methods in practice. So, the work presented here is 
to help in choosing the variant of the ‘theta’ method that would most likely find application 
and that might be recommended to manufacturers and would-be purchasers of diagnostic 
suspension testers.

2. Methodology 

The current state of the suspension shock absorber determines suspension relative damping 
(damping ratio). According to vibration theory (e.g. [7, 9, 10]) it is defined as the ratio of actual 
viscous damping coefficient value of the suspension system and its critical value (when the 
free vibration of the system under analysis becomes aperiodic). Frequently used name of 
this coefficient is ‘theta’, so the diagnostic method is also called “theta”.

The author has used a simulation method based on defined ‘quarter car’ models. He has 
chiefly used a model with two degrees of freedom (2DOF), where the impact of the mass 
of the vibration plate on calculation results is considered. In some variants of the ‘theta’ 
method, the model is simplified to one degree of freedom (1DOF). The analysis has been 
performed in the frequency domain for four variants of the ‘theta’ method. Calculations have 
been done for two typical datasets corresponding to the front and rear suspension system 
of a medium-class motor car. 

3. The simulation models used 

Below the structures of the models used, equations of motion of a linear ‘quarter-car’ model 
with its ancillary parameters as well as model data adopted (corresponding to real vehicle 
systems) will be discussed.

3.1. Structures of the models used 

Among the descriptions of the models of vehicles placed on shock absorber testers, those 
related to the BOGE method [8, 13, 14] have been left out of account because such a method 
is no longer used in its original form. Only modification described in [13] to a form close to 
the ‘theta’ method has been mentioned. The most complex model of a motor car placed on 
an on-vehicle shock absorber tester is the one presented in publication [12] – Figure 2. It is 
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a 3D model with 14 degrees of freedom (DOF), chiefly intended for the simulation of motor 
vehicle motion on even or rough road surface (including surface with random irregularities). 
In the application in question, kinematic excitation in a form typical for the EUSAMA method 
was applied to one (freely chosen) vehicle wheel. The main emphasis was placed on assess-
ment of the impact of damping in the shock absorber that was just not tested and of dry 
friction in the suspension system, for different states of the shock absorber under test. The 
calculations were carried out for an independent front suspension system (with couplings 
through the antiroll bar and vehicle body solid) and a dependent rear suspension system 
(with couplings through the rear axle solid and vehicle body solid). This model is the best 
where not only qualitative but also quantitative assessment of test results is essential. On 
the other hand, the necessity of having a large number of data and characteristics of the 
complex model is its weak point. 

A very popular simplified model is the ‘quarter-car’ model (see [1, 3, 7] or [10-12] as well 
as [13-15] or [17, 20, 22], and [23, 25]). It is built by dividing the 3D vehicle model by means 
of vertical planes into four ‘quarter cars’. Apart from the geometrical division, this should 
be done [1, 10] with simultaneous decomposition of inertial properties, with distinguishing 
the ‘sprung masses’, ‘unsprung masses’, and ‘coupling masses’ and with applying the mass 
conservation law and the principle of conservation of moments of inertia and static moments 
before and after the decomposition. Many authors (e.g. [1, 7, 10] or [11, 12] as well as [15, 17, 22] 
or [23, 25]) (use a linear form of this model, with a structure as presented in Figure 3a. Some 
of the authors [17, 22] carry out their analyses with taking also into account the inertia of the 
vibration plate, which has been shown in Figure 3b. 

Fig. 2. 3D model of vehicle dynamics with 14 DOF. Kinematic excitation in a form typical for the 

EUSAMA method applied to freely chosen vehicle wheel [16] 
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Fig. 3. Linear ‘quarter-car’ model, where (a) is general version, (b) is version dedicated to the vehicle 

on a diagnostic tester (V=0; the vibration plate inertia is considered) 

The authors of publications [11, 25] use a more complex nonlinear ‘quarter-car’ model, where 
nonlinearities of suspension and tire elasticity characteristics, ‘bouncing’ (tire separation 
from the ground), asymmetry of shock absorber damping curves, and dry friction in the 
suspension system are considered (in publication [25], five different formal descriptions of 
dry friction are used). 

Other models used in the works cited here have been presented in Figure 4a and b. The one 
shown in Figure 4a (e.g. [1, 3, 7] or [12]) represents a 1DOF system obtained by disregarding the 
‘unsprung mass’ and adopting an equivalent suspension elasticity (elasticity of the suspen-
sion and tire arranged in series). The model represented in Figure 4b is also a 1DOF system 
intended for the situation where the ‘sprung mass’ is immobile [13, 18]. 

Fig. 4. Simplified ‘quarter-car’ models, where (a) is 1DOF system obtained by disregarding the 

‘unsprung mass’ and adopting an equivalent suspension elasticity (elasticity of the suspension  

and tire arranged in series), (b) is another 1DOF system intended for the situation where  

the ‘sprung mass’ is immobile
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3.2. �Equations of motion of a linear ‘quarter-car’ model with its ancillary 
parameters 

The equations of motion will be presented in a form applicable to the most complex ‘quar-
ter-car’ model shown in Figure 3b. The other models (Figures 3a, 4a, and b) may be described 
by simplifying the complex model, which consists of three mass elements, i.e. ‘sprung mass’ 
m1 [kg], ‘unsprung mass’ m2 [kg], and vibration plate m3 [kg]. The suspension and tire stiffness 
have been denoted by k1 [N/m] and k2 [N/m], respectively. Symbols c1 [N∙s/m] and c2 [N∙s/m] 
represent the viscous damping coefficients of the suspension system and tire, respectively. 
The kinematic input applied by the vibration plate (exciter) is represented by ζ(t) [m]. A 
measuring system measures the input force under the vibration plate. When this force is 
calculated, other static loads (higher by exciter’s plate weight m3∙g, where g is acceleration of 
gravity) and the force of plate’s inertia (with a negative sign) should be considered.
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where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 
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For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 

(𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲) ∙ 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 +𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (10) 

Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 
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to the static deflection) and viscous damping force in the tire Ftwo.
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of plate’s inertia Fbp with a negative sign.
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where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 
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For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 

(𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲) ∙ 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 +𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (10) 

Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the 
static load Nst, Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g 
will distort the result of measurement (the value) of force Fdz and, in consequence, of force 
Fop. The Fbp force also introduces a phase shift of Fmd in relation to Fdz.

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the 
dynamic component of the tire force) has also been shown. This force is applied by tester’s 
vibration plate to the pneumatic tire. The Fmd force, i.e. the dynamic component of the force 



11The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022
https://doi.org/10.14669/AM/150823

that excites vibration on the tester, measured by tester’s measuring system has been shown 
as well.

The equations of motion in a matrix form have been presented as relation (8). They have 
been derived in accordance with the principle of dynamic force analysis, with considering the 
forces of inertia of individual mass elements of the model. The symbols of the matrices of 
inertia M, viscous damping C, stiffness K, excitation influences transmitted by damping in the 
pneumatic tire Cζ, and excitation influences transmitted by radial stiffness of the pneumatic 
tire Kζ have been highlighted. The vectors of generalized coordinates (displacements), veloc-
ities, and accelerations have been denoted by q,q̇,q̈, respectively. This notation has been 
used in equation (9).
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where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 
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For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 

(𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲) ∙ 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 +𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (10) 

Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 
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where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 
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For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 
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Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 

For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and 
an imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]):
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where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 
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� ∙ �

𝑧𝑧𝑧𝑧1
𝑧𝑧𝑧𝑧2� = � 0

𝑐𝑐𝑐𝑐2
� ∙ 𝜁𝜁𝜁𝜁̇ + � 0

𝑘𝑘𝑘𝑘2
� ∙ 𝜁𝜁𝜁𝜁 (8) 

𝑴𝑴𝑴𝑴 ∙ 𝒒̈𝒒𝒒𝒒 + 𝑪𝑪𝑪𝑪 ∙ 𝒒̇𝒒𝒒𝒒 + 𝑲𝑲𝑲𝑲 ∙ 𝒒𝒒𝒒𝒒 = 𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝜻̇𝜻𝜻𝜻 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻 ∙ 𝜻𝜻𝜻𝜻 (9) 

For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 

(𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲) ∙ 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 +𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (10) 

Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 
Its solution has a form (11)

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022 
https://doi.org/10.14669/AM/150823 

where g is acceleration of gravity) and the force of plate’s inertia (with a negative sign) should be 
considered. 

Nst=(m1+m2)∙g  (1) 

Nstm=(m1+m2+m3)∙g (2) 

The tire-exciter contact force Fop is a sum of static load Nst and dynamic component Fdz of the vertical 
tire force, this component being equal to the sum of dynamic spring force Fdso (measured in relation to 
the state of static equilibrium, i.e. for radial tire deflection in relation to the static deflection) and viscous 
damping force in the tire Ftwo. 

Fop=Fdz+Nst  (3) 

Fdz=Fdso+Ftwo  (4) 

The force measured in the diagnostic tester, denoted by Fopm, consists of the total tire-exciter contact 
force Fop, which includes other static loads Nstm=(m1+m2+m3)∙g, and the force of plate’s inertia Fbp with 
a negative sign. 

 Fopm=Fop-Fbp+m3∙g=Fop+m3∙d2ζ(t)/dt2+m3∙g=Fdz+Nstm+m3∙d2ζ(t)/dt2=Fmd+Nstm (5) 

 Fbp=-m3∙d2ζ(t)/dt2  (6) 

 Fmd=Fdz+m3∙d2ζ(t)/dt2  (7) 

Fmd is a result of measurement of the dynamic component Fdz of the tire force (where the static load Nst, 
Nstm is left out). The force of plate’s inertia Fbp and exciter’s plate weight m3∙g will distort the result of 
measurement (the value) of force Fdz and, in consequence, of force Fop. The Fbp force also introduces a 
phase shift of Fmd in relation to Fdz. 

In Figure 3b, the dynamic component Fdz of the vertical tire-exciter contact force (i.e. the dynamic 
component of the tire force) has also been shown. This force is applied by tester’s vibration plate to the 
pneumatic tire. The Fmd force, i.e. the dynamic component of the force that excites vibration on the 
tester, measured by tester’s measuring system has been shown as well. 

The equations of motion in a matrix form have been presented as relation (8). They have been derived 
in accordance with the principle of dynamic force analysis, with considering the forces of inertia of 
individual mass elements of the model. The symbols of the matrices of inertia M, viscous damping C, 
stiffness K, excitation influences transmitted by damping in the pneumatic tire Cζ, and excitation 
influences transmitted by radial stiffness of the pneumatic tire Kζ have been highlighted. The vectors of 
generalized coordinates (displacements), velocities, and accelerations have been denoted by 𝒒𝒒𝒒𝒒, 𝒒̇𝒒𝒒𝒒, 𝒒̈𝒒𝒒𝒒, 
respectively. This notation has been used in equation (9). 

�𝑚𝑚𝑚𝑚1 0
0 𝑚𝑚𝑚𝑚1

� ∙ �𝑧̈𝑧𝑧𝑧1𝑧̈𝑧𝑧𝑧2
� + �

𝑐𝑐𝑐𝑐1 −𝑐𝑐𝑐𝑐1
−𝑐𝑐𝑐𝑐1 𝑐𝑐𝑐𝑐1 + 𝑐𝑐𝑐𝑐2� ∙ �

𝑧̇𝑧𝑧𝑧1
𝑧̇𝑧𝑧𝑧2
� + � 𝑘𝑘𝑘𝑘1 −𝑘𝑘𝑘𝑘1

−𝑘𝑘𝑘𝑘1 𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2
� ∙ �

𝑧𝑧𝑧𝑧1
𝑧𝑧𝑧𝑧2� = � 0

𝑐𝑐𝑐𝑐2
� ∙ 𝜁𝜁𝜁𝜁̇ + � 0

𝑘𝑘𝑘𝑘2
� ∙ 𝜁𝜁𝜁𝜁 (8) 

𝑴𝑴𝑴𝑴 ∙ 𝒒̈𝒒𝒒𝒒 + 𝑪𝑪𝑪𝑪 ∙ 𝒒̇𝒒𝒒𝒒 + 𝑲𝑲𝑲𝑲 ∙ 𝒒𝒒𝒒𝒒 = 𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝜻̇𝜻𝜻𝜻 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻 ∙ 𝜻𝜻𝜻𝜻 (9) 

For equation (9), the Laplace transform was formulated, with zero initial conditions. After 
transformations, equation (10) was obtained, where the domain s=r+i∙ω has a real part r and an 
imaginary part ω and i2 = −1 (ω is the radian frequency [rad/s]): 

(𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲) ∙ 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 +𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (10) 

Its solution has a form (11) 

𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 ∙ 𝑠𝑠𝑠𝑠2 + 𝑪𝑪𝑪𝑪 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� ∙ 𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) (11) 

The operational transmittance (transfer function) for displacements (12) is a ratio of the 
Laplace transform of the output signal to the Laplace transform of the input signal (excita-
tion) of the system at zero initial conditions.
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  

𝜔𝜔𝜔𝜔01
02

2 = 𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

∓ ��𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

�
2
− 𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

For velocities and accelerations, the operational transmittances are represented by equa-
tions (13) and (14), respectively.
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  

𝜔𝜔𝜔𝜔01
02

2 = 𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

∓ ��𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

�
2
− 𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  
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2 = 𝑘𝑘𝑘𝑘
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 (19) 
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𝐹𝐹𝐹𝐹2
 (20) 
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  
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2 = 𝑘𝑘𝑘𝑘
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 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the oper-
ational transmittances will become spectral transmittances. This may be done by passing 
from domain s to parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is 
equal to zero. The Fourier transform of the dynamic component Fdz of the vertical tire-ex-
citer contact force is defined by equation (15).
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  

𝜔𝜔𝜔𝜔01
02

2 = 𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

∓ ��𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

�
2
− 𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end 
form of the spectral transmittance for the dynamic vertical force at the tire-exciter contact 
point was finally obtained (with remembering that q1 = z1 and q2 = z2):
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

The difference between the dynamic component of the force measured in the tester (Fmd) 
and the dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of 
inertia of tester’s vibration plate (exciter). 
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear 
systems of ordinary differential equations shown above. Their properties also reflect such 
quantities (ancillary parameters) as natural radian and Hertz frequencies of undamped 
systems, critical damping coefficients, and relative damping coefficients.

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration 
may be expressed by formula (18) [1, 23]. 
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped 
vibration is defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) 
applies [12, 13, 18]. 
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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∓ ��𝑘𝑘𝑘𝑘1∙𝐹𝐹𝐹𝐹2+(𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2)∙𝐹𝐹𝐹𝐹1
2∙𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2

�
2
− 𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 
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The operational transmittance (transfer function) for displacements (12) is a ratio of the Laplace 
transform of the output signal to the Laplace transform of the input signal (excitation) of the system at 
zero initial conditions. 

𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = (𝑴𝑴𝑴𝑴 𝑴 𝑴𝑴𝑴𝑴2 + 𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪  + 𝑲𝑲𝑲𝑲)−1 ∙ �𝑪𝑪𝑪𝑪𝜻𝜻𝜻𝜻 ∙ 𝑠𝑠𝑠𝑠 + 𝑲𝑲𝑲𝑲𝜻𝜻𝜻𝜻� (12) 

For velocities and accelerations, the operational transmittances are represented by equations (13) and 
(14), respectively. 

𝑯𝑯𝑯𝑯𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̇𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̇𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠 𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (13) 

𝑯𝑯𝑯𝑯𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) = �
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞1(𝑠𝑠𝑠𝑠)
𝐻𝐻𝐻𝐻𝑞̈𝑞𝑞𝑞2(𝑠𝑠𝑠𝑠)� = 𝒒̈𝒒𝒒𝒒(𝑠𝑠𝑠𝑠)

𝜁𝜁𝜁𝜁(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠2 ∙ 𝑯𝑯𝑯𝑯𝒒𝒒𝒒𝒒(𝑠𝑠𝑠𝑠) (14) 

It is possible to pass from the Laplace transform to the Fourier transform. Thus, the operational 
transmittances will become spectral transmittances. This may be done by passing from domain s to 
parameter i∙ω, with assuming that the real part r in equation s=r+i∙ω is equal to zero. The Fourier 
transform of the dynamic component Fdz of the vertical tire-exciter contact force is defined by equation 
(15). 

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐2 ∙ �𝜁𝜁𝜁𝜁̇(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� + 𝑘𝑘𝑘𝑘2 ∙ [𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑧𝑧2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)] (15) 

Based on equations (12)-(15) and in result of appropriate transformations, a compact end form of the 
spectral transmittance for the dynamic vertical force at the tire-exciter contact point was finally obtained 
(with remembering that q1 = z1 and q2 = z2): 

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� (16) 

The difference between the dynamic component of the force measured in the tester (Fmd) and the 
dynamic vertical force at the tire-exciter contact point (Fdz) arises from the force of inertia of tester’s 
vibration plate (exciter).  

𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) + 𝑚𝑚𝑚𝑚3 ∙ 𝜁𝜁𝜁𝜁̈(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) =

𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 ∙ 𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)
𝜁𝜁𝜁𝜁(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) = 

                     = (𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖 2 ∙𝜔𝜔𝜔𝜔  + 𝑘𝑘𝑘𝑘2) ∙ �1 −𝐻𝐻𝐻𝐻𝑞𝑞𝑞𝑞2(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖)� − 𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2 = 𝐻𝐻𝐻𝐻𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖) −𝑚𝑚𝑚𝑚3 ∙𝜔𝜔𝜔𝜔 2  (17) 

The linear dynamic systems presented (Figures 3a and b, 4a and b) are described by linear systems of 
ordinary differential equations shown above. Their properties also reflect such quantities (ancillary 
parameters) as natural radian and Hertz frequencies of undamped systems, critical damping coefficients, 
and relative damping coefficients. 

For the systems of Figures 3a and b, the natural radian frequencies of undamped vibration may be 
expressed by formula (18) [1, 23].  
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𝐹𝐹𝐹𝐹1∙𝐹𝐹𝐹𝐹2
 (18) 

For the system shown in Figure 4a, the value of the natural radian frequency of undamped vibration is 
defined by formula (19) (e.g. [1, 7, 10]); for a system of Figure 4b, formula (20) applies [12, 13, 18].  

𝜔𝜔𝜔𝜔0𝑎𝑎𝑎𝑎
2 = 𝑘𝑘𝑘𝑘

𝐹𝐹𝐹𝐹
 (19) 

𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏
2 = 𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2

𝐹𝐹𝐹𝐹2
 (20) 

Between the natural Hertz and radian frequencies of undamped vibration, a general rela-
tionship (21) holds [1, 7, 23]. 
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The damping is defined as ‘critical’ when the value of the viscous damping coefficient is such 
that the free vibration of the system under analysis becomes aperiodic [1, 7, 23]. 

For the systems of Figures 3a and b, the values of this coefficient are defined by formulas 
(22) and (23) [23]. 



13The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022
https://doi.org/10.14669/AM/150823

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022 
https://doi.org/10.14669/AM/150823 

Between the natural Hertz and radian frequencies of undamped vibration, a general relationship (21) 
holds [1, 7, 23].  

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖
2∙𝜋𝜋𝜋𝜋

  where i= 01, 02, 0a, 0b  (21) 

The damping is defined as ‘critical’ when the value of the viscous damping coefficient is such that the 
free vibration of the system under analysis becomes aperiodic [1, 7, 23].  
For the systems of Figures 3a and b, the values of this coefficient are defined by formulas (22) and (23) 
[23].  

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1 = 2 ∙ �
𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2∙𝐹𝐹𝐹𝐹1

𝑘𝑘𝑘𝑘2+𝑘𝑘𝑘𝑘1∙�1+
𝑚𝑚𝑚𝑚2
𝑚𝑚𝑚𝑚1

�
≈ 2 ∙ �𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2∙𝐹𝐹𝐹𝐹1

𝑘𝑘𝑘𝑘2+𝑘𝑘𝑘𝑘1
   for   𝑚𝑚𝑚𝑚1 ≫ 𝑚𝑚𝑚𝑚2 (22) 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 = 2 ∙ �(𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2) ∙ 𝑚𝑚𝑚𝑚2 (23) 

For the systems shown in Figures 4a and b, these values are defined by formulas (24) [1, 7, 23] and (25) 
[12, 13, 18], respectively. 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎 = 2 ∙ √𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  = 2 ∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚0𝑎𝑎𝑎𝑎 (24) 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏 = 2 ∙ �(𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2) ∙ 𝑚𝑚𝑚𝑚2 = 2 ∙ 𝑚𝑚𝑚𝑚2 ∙ 𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 (25) 

The relative damping coefficient ϑj [-] (‘theta’) is calculated as the ratio of the current value of the 
coefficient of damping in the vehicle suspension system (c or c1 [N∙s/m]) to the value of critical damping 
coefficient c1krj [N∙s/m], where j = 1, 2, a, b. For the systems of Figures 3a and b, the relative damping 
coefficient values ϑ1 and ϑ2 are defined by formulas (26) and (27) [23]; for the systems of Figure 4a, the 
relative damping coefficient values ϑa and ϑb are defined by formulas (28) (e.g. [1, 3, 7]) and (29) [12, 
18, 23], respectively. 

ϑ1=c1/ckr1  (26) 

ϑ2=c1/ckr2  (27) 

ϑa=c/ckra  (28) 

ϑb=c1/ckrb (29) 

3.3. Model data adopted, corresponding to real vehicle systems  

The calculations were carried out for the ‘quarter-car’ model data corresponding to the front and rear 
suspension systems of a medium-class motor car Astra Van. For the front and the rear suspension 
system, the data were as in Table 1 and in Table 2, respectively.  

The parameters describing the simulation test conditions and the adopted values of the relative and 
absolute damping coefficients ϑ1 and c1, respectively (corresponding to the models of Figures 3a and b, 
4a and b), which most closely represented the structure of the real vehicles under analysis, were as 
follows: m3=14.5 kg, the lowest Hertz (radian) frequency of the vibration under analysis fmin=0 (ωmin=0), 
the highest Hertz (radian) frequency of the vibration under analysis fmax=25 Hz (ωmax=157.08 rad/s), the 
lowest value of the relative coefficient of damping in the suspension system ϑ1min=0.04, the highest value 
of the relative coefficient of damping in the suspension system ϑ1max=0.48, step of changes in the relative 
coefficient of damping in the suspension system ∆ϑ1=0.04, the lowest value of the absolute damping 
coefficient (corresponding to the lowest relative coefficient of damping in the suspension system ϑ1min) 
c1min=226.776 N∙s/m (front suspension) and c1min=150.796 N∙s/m (rear suspension), the highest value of 
the absolute damping coefficient (corresponding to the highest relative coefficient of damping in the 
suspension system ϑ1max) c1max=2 721.312 N∙s/m (front suspension) and c1max= 1 809.552 N∙s/m (rear 
suspension), step of changes in the absolute coefficient of damping (corresponding to the step of changes 

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 96, No. 2, 2022 
https://doi.org/10.14669/AM/150823 

Between the natural Hertz and radian frequencies of undamped vibration, a general relationship (21) 
holds [1, 7, 23].  

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝜔𝜔𝜔𝜔𝑖𝑖𝑖𝑖
2∙𝜋𝜋𝜋𝜋

  where i= 01, 02, 0a, 0b  (21) 

The damping is defined as ‘critical’ when the value of the viscous damping coefficient is such that the 
free vibration of the system under analysis becomes aperiodic [1, 7, 23].  
For the systems of Figures 3a and b, the values of this coefficient are defined by formulas (22) and (23) 
[23].  

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘1 = 2 ∙ �
𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2∙𝐹𝐹𝐹𝐹1

𝑘𝑘𝑘𝑘2+𝑘𝑘𝑘𝑘1∙�1+
𝑚𝑚𝑚𝑚2
𝑚𝑚𝑚𝑚1

�
≈ 2 ∙ �𝑘𝑘𝑘𝑘1∙𝑘𝑘𝑘𝑘2∙𝐹𝐹𝐹𝐹1

𝑘𝑘𝑘𝑘2+𝑘𝑘𝑘𝑘1
   for   𝑚𝑚𝑚𝑚1 ≫ 𝑚𝑚𝑚𝑚2 (22) 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 = 2 ∙ �(𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2) ∙ 𝑚𝑚𝑚𝑚2 (23) 

For the systems shown in Figures 4a and b, these values are defined by formulas (24) [1, 7, 23] and (25) 
[12, 13, 18], respectively. 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎 = 2 ∙ √𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘𝑘  = 2 ∙ 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚0𝑎𝑎𝑎𝑎 (24) 

𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏 = 2 ∙ �(𝑘𝑘𝑘𝑘1 + 𝑘𝑘𝑘𝑘2) ∙ 𝑚𝑚𝑚𝑚2 = 2 ∙ 𝑚𝑚𝑚𝑚2 ∙ 𝜔𝜔𝜔𝜔0𝑏𝑏𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2 (25) 

The relative damping coefficient ϑj [-] (‘theta’) is calculated as the ratio of the current value of the 
coefficient of damping in the vehicle suspension system (c or c1 [N∙s/m]) to the value of critical damping 
coefficient c1krj [N∙s/m], where j = 1, 2, a, b. For the systems of Figures 3a and b, the relative damping 
coefficient values ϑ1 and ϑ2 are defined by formulas (26) and (27) [23]; for the systems of Figure 4a, the 
relative damping coefficient values ϑa and ϑb are defined by formulas (28) (e.g. [1, 3, 7]) and (29) [12, 
18, 23], respectively. 

ϑ1=c1/ckr1  (26) 

ϑ2=c1/ckr2  (27) 

ϑa=c/ckra  (28) 

ϑb=c1/ckrb (29) 

3.3. Model data adopted, corresponding to real vehicle systems  

The calculations were carried out for the ‘quarter-car’ model data corresponding to the front and rear 
suspension systems of a medium-class motor car Astra Van. For the front and the rear suspension 
system, the data were as in Table 1 and in Table 2, respectively.  

The parameters describing the simulation test conditions and the adopted values of the relative and 
absolute damping coefficients ϑ1 and c1, respectively (corresponding to the models of Figures 3a and b, 
4a and b), which most closely represented the structure of the real vehicles under analysis, were as 
follows: m3=14.5 kg, the lowest Hertz (radian) frequency of the vibration under analysis fmin=0 (ωmin=0), 
the highest Hertz (radian) frequency of the vibration under analysis fmax=25 Hz (ωmax=157.08 rad/s), the 
lowest value of the relative coefficient of damping in the suspension system ϑ1min=0.04, the highest value 
of the relative coefficient of damping in the suspension system ϑ1max=0.48, step of changes in the relative 
coefficient of damping in the suspension system ∆ϑ1=0.04, the lowest value of the absolute damping 
coefficient (corresponding to the lowest relative coefficient of damping in the suspension system ϑ1min) 
c1min=226.776 N∙s/m (front suspension) and c1min=150.796 N∙s/m (rear suspension), the highest value of 
the absolute damping coefficient (corresponding to the highest relative coefficient of damping in the 
suspension system ϑ1max) c1max=2 721.312 N∙s/m (front suspension) and c1max= 1 809.552 N∙s/m (rear 
suspension), step of changes in the absolute coefficient of damping (corresponding to the step of changes 

For the systems shown in Figures 4a and b, these values are defined by formulas (24) [1, 7, 23] 
and (25) [12, 13, 18], respectively.
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3.3. Model data adopted, corresponding to real vehicle systems 

The calculations were carried out for the ‘quarter-car’ model data corresponding to the front 
and rear suspension systems of a medium-class motor car Astra Van. For the front and the 
rear suspension system, the data were as in Table 1 and in Table 2, respectively. 

The parameters describing the simulation test conditions and the adopted values of the 
relative and absolute damping coefficients ϑ1 and c1, respectively (corresponding to the 
models of Figures 3a and b, 4a and b), which most closely represented the structure of the 
real vehicles under analysis, were as follows: m3=14.5 kg, the lowest Hertz (radian) frequency 
of the vibration under analysis fmin=0 (ωmin=0), the highest Hertz (radian) frequency of the 
vibration under analysis fmax=25 Hz (ωmax=157.08 rad/s), the lowest value of the relative 
coefficient of damping in the suspension system ϑ1min=0.04, the highest value of the relative 
coefficient of damping in the suspension system ϑ1max=0.48, step of changes in the relative 
coefficient of damping in the suspension system Δϑ1=0.04, the lowest value of the abso-
lute damping coefficient (corresponding to the lowest relative coefficient of damping in the 
suspension system ϑ1min) c1min=226.776 N∙s/m (front suspension) and c1min=150.796 N∙s/m 
(rear suspension), the highest value of the absolute damping coefficient (corresponding to the 
highest relative coefficient of damping in the suspension system ϑ1max) c1max=2 721.312 N∙s/m  
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(front suspension) and c1max= 1 809.552 N∙s/m (rear suspension), step of changes in the 
absolute coefficient of damping (corresponding to the step of changes in the relative coef-
ficient of damping in the suspension system Δϑ1) Δc1=226.776 N∙s/m (front suspension), 
Δc1=150.796 N∙s/m (rear suspension). 

Table 1. ‘Quarter-car’ model data (see Figures 3a and b, 4a and b). The front suspension system of 

a medium-class motor car Astra Van 

Parameter denotation Value Unit measure 

m 346 kg
m1 346 kg
m2 36 kg
k 23 224 N/m
k1 25 570 N/m
k2 253 161 N/m
c variable N∙s/m
c1 variable N∙s/m
c2 150 N∙s/m
f01 1.30 Hz
f02 14.01 Hz
ω01 8.19 rad/s
ω02 88.03 rad/s
f0a 1.30 Hz
f0b 14.00 Hz
ω0a 8.19 rad/s
ω0b 87.99 rad/s
ckr1 5 669.4 N∙s/m
ckr2 6 335.4 N∙s/m
ckra 5 669.4 N∙s/m
ckrb 6 335.4 N∙s/m
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Table 2. ‘Quarter-car’ model data (see Figures 3a and b, 4a and b). The rear suspension system  

of a medium-class motor car Astra Van 

Parameter denotation Value Unit measure 

m 160 kg
m1 160 kg
m2 35 kg
k 22 207 N/m
k1 24 882 N/m
k2 206 526 N/m
c variable N∙s/m
c1 variable N∙s/m
c2 150 N∙s/m
f01 1.87 Hz
f02 12.96 Hz
ω01 11.77 rad/s
ω02 81.42 rad/s
f0a 1.88 Hz
f0b 12.94 Hz
ω0a 11.78 rad/s
ω0b 81.31 rad/s
ckr1 3 769.9 N∙s/m
ckr2 5 691.8 N∙s/m
ckra 3 769.9 N∙s/m
ckrb 5 691.8 N∙s/m

4. Detailed description and evaluation of analysed  
variants of the ‘theta’ method

As it has been mentioned, the notion of a relative coefficient of damping (damping ratio) in 
the suspension system is used, which is denoted by the Greek letter ϑ (‘theta’) – see equa-
tions (26)-(29). Two versions of the method come from modal analysis and are also known as 
the ‘peak-picking method’ or ‘half-power method’ [9]. The other two versions are described 
in cited patent documentation [3, 11, 18].

4.1. The ‘Calvo 1’ and ‘Calvo 2’ methods 

Both refer to the ‘peak-picking method’, also referred to as ‘half-power method’, known from 
modal analysis [9]. The quantities to be assessed may be the tire-exciter contact force Fop or 
the absolute value of transmittance HFdz of its dynamic component as well as of the corre-
sponding measured values, i.e. Fopm and HFmd. The sense of selection of the values of the 
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quantities used in this method has been illustrated in Figure 5. In this case, a curve repre-
senting one of the quantities mentioned above is analysed in the area around its maximum.

In publication [4], the authors determined the value of the relative coefficient of damping in 
the suspension system ϑC1 (the ‘Calvo 1’ coefficient) from equation (30). The Hertz frequency 
fCm is here close to the 2nd resonance frequency. In publication [5], two modifications have 
been proposed: the use of a simpler form of the relative coefficient of damping in the suspen-
sion system ϑC2 (the ‘Calvo 2’ coefficient – see equation (31)) and analysis for Hertz frequency 
fCm close to the 1st resonance frequency.
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≈ 1  (31) 

The approximation shown in relation (31) is acceptable when fCm=(fC2+fC1)/2, i.e. when the curves under 
analysis are symmetric, which is not always true. As an example, this requirement is not met in the case 
illustrated in Figure 5. Therefore, a decision was made to analyse both variants of the Calvo method, 
and around both the 1st and 2nd resonance frequency at that. 

 
Fig. 5. The ‘peak-picking’ method, variants ‘Calvo 1’ and ‘Calvo 2’. The absolute value of 

transmittance HFdz of force Fdz in the area around its maximum HFdz_max is analysed. f represents the 
Hertz frequency  

Figures 6a and b and Figures 7a and b illustrate the applicability of the ‘Calvo 1’ and ‘Calvo 2’ methods 
to the analysis close to the 1st (Figures 6a and b) and 2nd (Figures 7a and b) resonance frequency, for the 
front suspension system of a medium-class motor car Astra Van. The absolute values of transmittances 
HFdz and HFmd of the tire-exciter contact force (Figures ‘a’) and of its measured value (Figures ‘b’) are 
analysed, respectively, in the areas around their maximums. Close to the 1st resonance frequency 
(Figures 6a and b), they are very similar to each other. The values of ϑC1, ϑC2, ϑC1m, and ϑC2m may be 
calculated for 6 of the 12 ϑ1 values under consideration. Close to the 2nd resonance frequency (Figures 
7a and b), the ϑC1 and ϑC2 values may be calculated for 7 of the 12 ϑ1 values under consideration and the 
ϑC1m and ϑC2m values may be calculated for all the 12 ϑ1 values.  
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Figures 6a and b and Figures 7a and b illustrate the applicability of the ‘Calvo 1’ and ‘Calvo 2’ 
methods to the analysis close to the 1st (Figures 6a and b) and 2nd (Figures 7a and b) reso-
nance frequency, for the front suspension system of a medium-class motor car Astra Van. 
The absolute values of transmittances HFdz and HFmd of the tire-exciter contact force 
(Figures ‘a’) and of its measured value (Figures ‘b’) are analysed, respectively, in the areas 
around their maximums. Close to the 1st resonance frequency (Figures 6a and b), they are 
very similar to each other. The values of ϑC1, ϑC2, ϑC1m, and ϑC2m may be calculated for 6 of 
the 12 ϑ1 values under consideration. Close to the 2nd resonance frequency (Figures 7a and b), 
the ϑC1 and ϑC2 values may be calculated for 7 of the 12 ϑ1 values under consideration and 
the ϑC1m and ϑC2m values may be calculated for all the 12 ϑ1 values. 

Fig. 6. Illustration of the applicability of the ‘Calvo 1’ and ‘Calvo 2’ methods to the analysis carried out 

close to the 1st resonance frequency. Analysed are the absolute values of transmittances HFdz (a) and 

HFmd ((b) - related to the tire-exciter contact force and to its measured value, respectively,  

and denoted by AHFDZ and AHFDZM in the graphs) close to their maximums.  

Object tested: front suspension of the Astra Van 

Figures 8a and b and Figures 9a and b show results obtained from methods ‘Calvo 1’  
(ϑC1 and ϑC1m) and ‘Calvo 2’ (ϑC2 and ϑC2m) close to the 1st and 2nd resonance frequency of the 
front suspension system of a medium-class motor car Astra Van. Figures ‘a’ and ‘b’ deal with 
the absolute values of transmittances HFdz of the tire-exciter contact force and HFmd of the 
measured value of this force, respectively. For the 1st resonance frequency (Figures 8a and 
b), the values of ϑC1, ϑC2, ϑC1m, and ϑC2m well represent the value of ϑ1, both in qualitative 
and quantitative terms, but only within the range of up to ϑ1=0.24. For the 2nd resonance 
frequency in turn (Figures 9a and b), the values of ϑC1, ϑC2, ϑC1m, and ϑC2m are close to the 
value of ϑ1, but only if they are very low (not exceeding 0.16-0.20; within this range of ϑ1, the 
errors are smaller for the ϑC1m and ϑC2m values measured).
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Fig. 7. Illustration of the applicability of the ‘Calvo 1’ and ‘Calvo 2’ methods to the analysis carried out 

close to the 2nd resonance frequency. Analysed are the absolute values of transmittances HFdz (a)  

and HFmd ((b) - related to the tire-exciter contact force and to its measured value, respectively,  

and denoted by AHFDZ and AHFDZM in the graphs) close to their maximums.  

Object tested: front suspension of the Astra Van 

It is hard to state unequivocally which of the ‘Calvo 1’ and ‘Calvo 2’ methods would offer 
better estimation of ϑ1. This depends on the quantity analysed and on the ϑ1 value. A result 
markedly worse for the ‘Calvo 1’ method can be seen in Figure 9a for ϑ1>0.16. The results 
obtained for the front suspension system of a medium-class motor car Astra Van indicate 
usefulness of the ‘Calvo 1’ and ‘Calvo 2’ methods for low ϑ1 values (ϑ1<0.16-0.20), i.e. for shock 
absorbers being in medium and poor condition.

Fig. 8. Results obtained from methods ‘Calvo 1’ (ϑC1 and ϑC1m, denoted by Theta_C1 and Theta_C1m in 

the graphs) and ‘Calvo 2’ (ϑC2 and ϑC2m, denoted by Theta_C2 and Theta_C2m in the graphs) close to 

the 1st resonance frequency. Figures (a) and (b) deal with the absolute values of transmittances  

HFdz of the tire-exciter contact force and HFmd of the measured value of this force, respectively. 

Object tested: front suspension of the Astra Van 
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Fig. 9. Results obtained from methods ‘Calvo 1’ (ϑC1 and ϑC1m, denoted by Theta_C1 and Theta_C1m in 

the graphs) and ‘Calvo 2’ (ϑC2 and ϑC2m, denoted by Theta_C2 i Theta_C2m in the graphs) close to the 

2nd resonance frequency. Figures (a) and (b) deal with the absolute values of transmittances  

HFdz of the tire-exciter contact force and HFmd of the measured value of this force, respectively. 

Object tested: front suspension of the Astra Van 

Similar calculations were carried out for data of the rear suspension system of the same car. 
Close to the 1st resonance frequency, the values of ϑC1, ϑC2, ϑC1m, and ϑC2m could be calcu-
lated for 7 of the 12 ϑ1 values under consideration. Close to the 2nd resonance frequency, the 
ϑC1 and ϑC2 values could be calculated for 10 of the 12 ϑ1 values under consideration and the 
ϑC1m and ϑC2m values could be calculated for all the 12 ϑ1 values. 

Figures 10a and b and Figures 11a and b show results obtained from methods ‘Calvo 1’  
(ϑC1 and ϑC1m) and ‘Calvo 2’ (ϑC2 and ϑC2m) close to the 1st and 2nd resonance frequency. 
Figures ‘a’ and ‘b’ deal with the analysed absolute value of transmittance HFdz of the tire-ex-
citer contact force and the absolute value of transmittance HFmd of the measured value 
of this force, respectively. 
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Fig. 10. Results obtained from methods ‘Calvo 1’ (ϑC1 and ϑC1m, denoted by Theta_C1 and Theta_C1m in 

the graphs) and ‘Calvo 2’ (ϑC2 and ϑC2m, denoted by Theta_C2 i Theta_C2m in the graphs) close to the 

1st resonance frequency. Figures (a) and (b) deal with the analysed absolute value of transmittance 

HFdz of the tire-exciter contact force and the absolute value of transmittance HFmd of the measured 

value of this force, respectively. Object tested: rear suspension of the Astra Van

Fig. 11. Results obtained from methods ‘Calvo 1’ (ϑC1 and ϑC1m, denoted by Theta_C1 and Theta_C1m in 

the graphs) and ‘Calvo 2’ (ϑC2 and ϑC2m, denoted by Theta_C2 i Theta_C2m in the graphs) close to the 

2nd resonance frequency. Figures (a) and (b) deal with the analysed absolute value of transmittance 

HFdz of the tire-exciter contact force and the absolute value of transmittance HFmd of the measured 

value of this force, respectively. Object tested: rear suspension of the Astra Van 

For the 1st resonance frequency (Figures 10a and b), the values of ϑC1, ϑC2, ϑC1m, and ϑC2m 
satisfactorily represent the value of ϑ1, both in qualitative and quantitative terms, but only 
within the range of up to ϑ1=0.24; however, these results are burdened with a greater error 
than it was in the case of the front suspension system. For the 2nd resonance frequency in 
turn (Figures 11a and b), the values of ϑC1 and ϑC2 are close to the value of ϑ1 within the 
range from 0.04 to 0.28. For the values exceeding 0.28, the results are overestimated, espe-
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cially for the ‘Calvo 1’ method. The calculated ϑC1m and ϑC2m values are close to those of ϑ1, 
but only for ϑ1 not exceeding 0.12. Above this level, the error rapidly increases with growing 
ϑ1 values, which are underestimated. It is hard to state unequivocally which of the ‘Calvo 1’ 
and ‘Calvo 2’ methods would offer better estimation of ϑ1, except for the trend that can 
be seen in Figure 11a for the ‘Calvo 1’ method. The results obtained for the rear suspension 
system of a medium-class motor car Astra Van indicate usefulness of the ‘Calvo 1’ and ‘Calvo 
2’ methods for the 1st resonance frequency unless the ϑ1 values exceed 0.24. For the 2nd 

resonance frequency, both methods are useful, but only for the analysis of the tire-exciter 
contact force, i.e. when the value measured is corrected by the force of inertia of exciter’s 
vibration plate.

The presented results obtained for the front and rear suspension systems of a medium-class 
motor car Astra Van show that both the ‘Calvo 1’ and ‘Calvo 2’ methods are useful, but only 
for low and medium ϑ1 values (of up to ϑ1=0.24), i.e. for shock absorbers being in medium 
and poor condition. If the assessment is done for measurements carried out close to the 
2nd resonance frequency, then the force value measured must be corrected by the force of 
inertia of exciter’s vibration plate. In such a case, however, the assessment of the condition 
of the suspension system might be too optimistic (see Figure 9a). The above assessment of 
the usefulness of the ‘Calvo 1’ and ‘Calvo 2’ methods may be confronted with nominal values 
of the relative damping coefficient ϑ1 for suspension systems of various kinds. The authors of 
publication [4] define the following grades of motor car suspension systems, based on the ϑ1 
value: 0.20-0.25 – ‘comfort’; 0.25-0.30 – ‘semi-sport’; 0.30-0.35 – ‘sport’; 0.35-0.40 – ‘racing’.

4.2. The Mazůrek and Klapka method 

A description of this method may be found in the patent application submitted by Ivan 
Mazůrek and Milan Klapka [18] and in the publication by these authors [11]. In relation to 
the Hunter method (e.g. [20, 22, 23]), the authors propose to use the stand with a smaller 
mass forcing vibrations and a smaller amplitude of its vertical movement. The essence of 
the method does not change: the phase shift angle between the kinematic excitation (plate 
movement) and the force in contact of the tire with the excitation plate is tested. The relative 
suspension damping coefficient ϑCz being determined is described by equation (32). Formally, 
it is related to the quantity ϑb defined by (29), but it is a theoretical notion applicable to the 
model of Figure 4b instead of being related to the quantity to be found, which should reflect 
the ϑ1 values applicable to Figures 3a and b. The equation has been derived from the rela-
tions that define the phase shift angle between the vertical displacement of exciter’s vibra-
tion plate and the tire-exciter contact force for the resonance frequency, calculated on the 
grounds of transmittance HFdz(i∙ω).
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The presented results obtained for the front and rear suspension systems of a medium-class motor car 
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ϑ1 values (of up to ϑ1=0.24), i.e. for shock absorbers being in medium and poor condition. If the 
assessment is done for measurements carried out close to the 2nd resonance frequency, then the force 
value measured must be corrected by the force of inertia of exciter’s vibration plate. In such a case, 
however, the assessment of the condition of the suspension system might be too optimistic (see Figure 
9a). The above assessment of the usefulness of the ‘Calvo 1’ and ‘Calvo 2’ methods may be confronted 
with nominal values of the relative damping coefficient ϑ1 for suspension systems of various kinds. The 
authors of publication [4] define the following grades of motor car suspension systems, based on the ϑ1 
value: 0.20-0.25 – ‘comfort’; 0.25-0.30 – ‘semi-sport’; 0.30-0.35 – ‘sport’; 0.35-0.40 – ‘racing’. 

4.2. The Mazůrek and Klapka method  

A description of this method may be found in the patent application submitted by Ivan Mazůrek and 
Milan Klapka [18] and in the publication by these authors [11]. In relation to the Hunter method (e.g. 
[20, 22, 23]), the authors propose to use the stand with a smaller mass forcing vibrations and a smaller 
amplitude of its vertical movement. The essence of the method does not change: the phase shift angle 
between the kinematic excitation (plate movement) and the force in contact of the tire with the excitation 
plate is tested. The relative suspension damping coefficient ϑCz being determined is described by 
equation (32). Formally, it is related to the quantity ϑb defined by (29), but it is a theoretical notion 
applicable to the model of Figure 4b instead of being related to the quantity to be found, which should 
reflect the ϑ1 values applicable to Figures 3a and b. The equation has been derived from the relations 
that define the phase shift angle between the vertical displacement of exciter’s vibration plate and the 
tire-exciter contact force for the resonance frequency, calculated on the grounds of transmittance 
HFdz(i∙ω). 
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  (32) 

Φ is the said phase shift angle; k1, k2 and ω0b=2∙π∙f0b are parameters of the system of Figure 4b; ω0b and 
f0b are defined by equations (20) and (21), respectively. The approximate form on the right side of 
equation (32) is acceptable for k2>>k1. Equation (20) suggests that ω0b is close to the 2nd natural 
frequency of the ‘quarter-car’ model of Figure 3a (this is confirmed by the values of the parameters of 
the models under test), for which the relation m1>>m2 is true and the high value of frequency ω0b 
justifies the assumption that z1=0. Thus, the system of Figure 3a comes down to the system of Figure 
4b. The authors of publications [11, 18] do not make any mention of considering the inertia of the 
vibration plate. The author of this study decided to examine the impact of this inertia on the results 
obtained with using this method. The relative damping coefficient calculated from the phase shift angle 
determined without considering the inertia of the vibration plate, i.e. based on the force measured in the 
tester, was denoted by ϑCzm. The sensitivity of coefficient ϑCz (equation (32)) to changes in the frequency 
at which the measurement is carried out was also examined. The relative sensitivity coefficient W%

Cz 
(equation (33)) was determined; it is measured in %/%, which means that it represents the relative 
percentage change in ϑCz caused by a one percent change in the excitation frequency ω. 
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Figure 12a and b shows the effect of using the method under consideration for data of the front (Figure 
a) and rear (Figure b) suspension system of a medium-class motor car Astra Van. The ϑCz and ϑCzm 
coefficients have been calculated for the phase shift angle and for ω0b=2∙π∙f0b of the simplified 
undamped system. 

Φ is the said phase shift angle; k1, k2 and ω0b=2∙π∙f0b are parameters of the system of Figure 
4b; ω0b and f0b are defined by equations (20) and (21), respectively. The approximate form on 
the right side of equation (32) is acceptable for k2>>k1. Equation (20) suggests that ω0b is 
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close to the 2nd natural frequency of the ‘quarter-car’ model of Figure 3a (this is confirmed 
by the values of the parameters of the models under test), for which the relation m1>>m2 
is true and the high value of frequency ω0b justifies the assumption that z1=0. Thus, the 
system of Figure 3a comes down to the system of Figure 4b. The authors of publications  
[11, 18] do not make any mention of considering the inertia of the vibration plate. The author 
of this study decided to examine the impact of this inertia on the results obtained with using 
this method. The relative damping coefficient calculated from the phase shift angle deter-
mined without considering the inertia of the vibration plate, i.e. based on the force meas-
ured in the tester, was denoted by ϑCzm. The sensitivity of coefficient ϑCz (equation (32)) 
to changes in the frequency at which the measurement is carried out was also examined. 
The relative sensitivity coefficient W%Cz (equation (33)) was determined; it is measured in 
%/%, which means that it represents the relative percentage change in ϑCz caused by a one 
percent change in the excitation frequency ω.
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authors of publication [4] define the following grades of motor car suspension systems, based on the ϑ1 
value: 0.20-0.25 – ‘comfort’; 0.25-0.30 – ‘semi-sport’; 0.30-0.35 – ‘sport’; 0.35-0.40 – ‘racing’. 
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between the kinematic excitation (plate movement) and the force in contact of the tire with the excitation 
plate is tested. The relative suspension damping coefficient ϑCz being determined is described by 
equation (32). Formally, it is related to the quantity ϑb defined by (29), but it is a theoretical notion 
applicable to the model of Figure 4b instead of being related to the quantity to be found, which should 
reflect the ϑ1 values applicable to Figures 3a and b. The equation has been derived from the relations 
that define the phase shift angle between the vertical displacement of exciter’s vibration plate and the 
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equation (32) is acceptable for k2>>k1. Equation (20) suggests that ω0b is close to the 2nd natural 
frequency of the ‘quarter-car’ model of Figure 3a (this is confirmed by the values of the parameters of 
the models under test), for which the relation m1>>m2 is true and the high value of frequency ω0b 
justifies the assumption that z1=0. Thus, the system of Figure 3a comes down to the system of Figure 
4b. The authors of publications [11, 18] do not make any mention of considering the inertia of the 
vibration plate. The author of this study decided to examine the impact of this inertia on the results 
obtained with using this method. The relative damping coefficient calculated from the phase shift angle 
determined without considering the inertia of the vibration plate, i.e. based on the force measured in the 
tester, was denoted by ϑCzm. The sensitivity of coefficient ϑCz (equation (32)) to changes in the frequency 
at which the measurement is carried out was also examined. The relative sensitivity coefficient W%
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(equation (33)) was determined; it is measured in %/%, which means that it represents the relative 
percentage change in ϑCz caused by a one percent change in the excitation frequency ω. 
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Figure 12a and b shows the effect of using the method under consideration for data of the front (Figure 
a) and rear (Figure b) suspension system of a medium-class motor car Astra Van. The ϑCz and ϑCzm 
coefficients have been calculated for the phase shift angle and for ω0b=2∙π∙f0b of the simplified 
undamped system. 

Figure 12a and b shows the effect of using the method under consideration for data of the 
front (Figure a) and rear (Figure b) suspension system of a medium-class motor car Astra 
Van. The ϑCz and ϑCzm coefficients have been calculated for the phase shift angle and for 
ω0b=2∙π∙f0b of the simplified undamped system.

Fig. 12. Results obtained with using the Mazůrek and Klapka method for data of the front (a) and 

rear (b) suspension of the Astra Van. The ϑCz and ϑCzm coefficient values (Theta_Cz and Theta_Czm, 

respectively, in the graphs) have been calculated for the phase shift angle and for ω0b=2×π×f0b of the 

simplified undamped system. The ϑCz values apply to the measurement of the phase shift of the  

tire-exciter contact force and the ϑCzm values apply to the measurement of the phase shift of the 

force measured in the tester (where the impact of the force of inertia of exciter’s vibration plate 

is not considered) 

The ϑCz values apply to the measurement of the phase shift of the tire-exciter contact force 
and the ϑCzm values apply to the measurement of the phase shift of the force measured in 
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the tester (where the impact of the force of inertia of exciter’s vibration plate is not consid-
ered). Both graphs confirm the reasonability of considering the inertia of exciter’s vibration 
plate. When the related correction is made, the results calculated for the front suspension 
system become close to the actual values (ϑCz≈ϑ1). For the rear suspension system, the 
results are not so satisfactory; nevertheless, the ϑCz(ϑ1) curve is almost parallel to the ϑ1=ϑ1 
line.

Figures 13a and b show results of estimation of the relative sensitivity coefficient W%Cz, 
which represents the relative percentage change in ϑCz caused by a one percent change in 
the excitation frequency ω. The W%Cz coefficient values apply to the measurement of the 
phase shift of the tire-exciter contact force and the W%Czm values apply to the measure-
ment of the phase shift of the force measured in the tester (where the impact of the force 
of inertia of exciter’s vibration plate is not considered). These calculations were carried out 
for ω0b=2∙π∙f0b, corresponding to the natural frequency of the simplified undamped system 
shown in Figure 4b. 

Fig. 13. Results obtained with using the Mazůrek and Klapka method for data of the front (a) and 

rear (b) suspension of the Astra Van. The relative sensitivity coefficient W%
Cz represents the relative 

percentage change in ϑCz caused by a one percent change in the excitation frequency ω. The W%
Cz 

coefficient values apply to the measurement of the phase shift of the tire-exciter contact force and 

the W%
Czm values apply to the measurement of the phase shift of the force measured in the tester 

(where the impact of the force of inertia of exciter’s vibration plate is not considered) 

The results indicate very high sensitivity of the method under analysis to the accuracy of 
determining the frequency for which the phase shift angle is measured and the ϑCz value is 
calculated. This sensitivity rises with a decrease in damping, i.e. with growing deterioration in 
the condition of vibration damping elements of the suspension system.

The results presented indicate considerable disadvantages of the Mazůrek and Klapka 
method. It has been clearly shown that a correction must be made here for the inertia of 
exciter’s vibration plate. This is because the measurement is carried out at the higher reso-
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nance frequency of the undamped system. Moreover, the method under analysis has been 
shown to be very sensitive to the accuracy of determining the frequency at which the meas-
urement is carried out. This sensitivity rises with a decrease in damping, i.e. with growing 
deterioration in the condition of vibration damping elements of the suspension system. This 
must be considered a serious drawback of the method in question. 

4.3. The Buzzi method 

This method has been described in the patent application submitted by Carlo Buzzi [3]. The 
hardware of the method is like this used in the Hunter method (e.g. [20, 22, 23]). Measuring 
system is focused on the phase shift angle between the excitation (plate movement) and the 
force in the tire-excitation plate contact. The software is created to measure of phase shift 
angle derivative related to excitation frequency. The relative suspension damping coefficient 
ϑIT being determined is described by equation (34). Formally, it is related to the quantity 
ϑa defined by (28), but it is a theoretical notion applicable to the model of Figure 4a instead 
of being related to the quantity to be found, which should reflect the ϑ1 values applicable 
to Figures 3a and b. Φ is the phase shift angle between the tire-exciter contact force and 
the vertical displacement of exciter’s vibration plate; ω=2∙π∙f (f is the Hertz frequency) and 
ω0a=2∙π∙f0a is a parameter of the system of Figure 4a; ω0a and f0a are defined by equations 
(19) and (21), respectively.
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The results indicate very high sensitivity of the method under analysis to the accuracy of determining 
the frequency for which the phase shift angle is measured and the ϑCz value is calculated. This sensitivity 
rises with a decrease in damping, i.e. with growing deterioration in the condition of vibration damping 
elements of the suspension system. 

The results presented indicate considerable disadvantages of the Mazůrek and Klapka method. It has 
been clearly shown that a correction must be made here for the inertia of exciter’s vibration plate. This 
is because the measurement is carried out at the higher resonance frequency of the undamped system. 
Moreover, the method under analysis has been shown to be very sensitive to the accuracy of determining 
the frequency at which the measurement is carried out. This sensitivity rises with a decrease in damping, 
i.e. with growing deterioration in the condition of vibration damping elements of the suspension system. 
This must be considered a serious drawback of the method in question.  

4.3. The Buzzi method  

This method has been described in the patent application submitted by Carlo Buzzi [3]. The hardware 
of the method is like this used in the Hunter method (e.g. [20, 22, 23]). Measuring system is focused on 
the phase shift angle between the excitation (plate movement) and the force in the tire-excitation plate 
contact. The software is created to measure of phase shift angle derivative related to excitation 
frequency. The relative suspension damping coefficient ϑIT being determined is described by equation 
(34). Formally, it is related to the quantity ϑa defined by (28), but it is a theoretical notion applicable to 
the model of Figure 4a instead of being related to the quantity to be found, which should reflect the ϑ1 
values applicable to Figures 3a and b. Φ is the phase shift angle between the tire-exciter contact force 
and the vertical displacement of exciter’s vibration plate; ω=2·π·f (f is the Hertz frequency) and 
ω0a=2·π·f0a is a parameter of the system of Figure 4a; ω0a and f0a are defined by equations (19) and (21), 
respectively. 

= 1

∙ 0
  (34) 

The method has been derived from an analysis of the derivative of Φ with respect to ω. The analysis 
applies to a 1DOF system shown in Figure 4a and built by simplifying the system of Figure 3a. The 
unsprung mass m2 is disregarded (although in practice, however, it is most convenient to assume 
m=m1+m2). The suspension stiffness k is the resultant stiffness of a series system of springs with 
stiffness of k1 and k2. If this is considered, it becomes clear that equation (19) suggests the value of ω0a 

The method has been derived from an analysis of the derivative of Φ with respect to ω. The 
analysis applies to a 1DOF system shown in Figure 4a and built by simplifying the system of 
Figure 3a. The unsprung mass m2 is disregarded (although in practice, however, it is most 
convenient to assume m=m1+m2). The suspension stiffness k is the resultant stiffness of 
a series system of springs with stiffness of k1 and k2. If this is considered, it becomes clear 
that equation (19) suggests the value of ω0a to be close to that of the first natural frequency 
ω01 of the model shown in Figure 4a (which is confirmed by the values of the parameters of 
the models under examination). In the Carlo Buzzi’s patent specification [3], no mention has 
been made of considering the inertia of tester’s vibration plate. This may be understood if 
considering the low value of the frequency for which equation (34) is used. The author of this 
study, however, decided to examine the impact of this inertia on the results obtained with 
using this method. The relative damping coefficient calculated from the phase shift angle 
determined without considering the inertia of the vibration plate, i.e. based on the value 
of the force measured in the tester, was denoted by ϑITzm. The sensitivity of coefficient ϑIT 
(equation (34)) to changes in the frequency at which the measurement is carried out was 
also examined. The relative sensitivity coefficient W%IT (equation (35)) was determined; it is 
measured in %/%, which means that it represents the relative percentage change in ϑCIT 
caused by a one percent change in the excitation frequency ω. 
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to be close to that of the first natural frequency ω01 of the model shown in Figure 4a (which is confirmed 
by the values of the parameters of the models under examination). In the Carlo Buzzi’s patent 
specification [3], no mention has been made of considering the inertia of tester’s vibration plate. This 
may be understood if considering the low value of the frequency for which equation (34) is used. The 
author of this study, however, decided to examine the impact of this inertia on the results obtained with 
using this method. The relative damping coefficient calculated from the phase shift angle determined 
without considering the inertia of the vibration plate, i.e. based on the value of the force measured in the 
tester, was denoted by ϑITzm. The sensitivity of coefficient ϑIT (equation (34)) to changes in the frequency 
at which the measurement is carried out was also examined. The relative sensitivity coefficient W%

IT 
(equation (35)) was determined; it is measured in %/%, which means that it represents the relative 
percentage change in ϑCIT caused by a one percent change in the excitation frequency ω.  

𝑊𝑊𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
% = 𝜕𝜕𝜕𝜕(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜗𝜗𝜗𝜗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

𝜕𝜕𝜕𝜕(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔)
= 𝜕𝜕𝜕𝜕(𝜗𝜗𝜗𝜗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

𝜕𝜕𝜕𝜕(𝜔𝜔𝜔𝜔) ∙
𝜔𝜔𝜔𝜔
𝜗𝜗𝜗𝜗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

= −
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2∙𝜔𝜔𝜔𝜔+

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

   for ω=ωa  (35) 

For the Φ(ω) curves, representing the phase shift angle as a function of the excitation frequency, 
approximations of derivatives of angle Φ with respect to frequency ω were determined (with using a 
difference quotient) to enable the calculation of ϑIT and ϑITm for frequency ω0a. Figure 14 a and b shows 
the effect of using the Buzzi method for data of the front (Figure a) and rear (Figure b) suspension 
system of a medium-class motor car Astra Van. The ϑIT and ϑITm coefficients have been calculated for 
the phase shift angle and for natural frequency ω0a=2∙π∙f0a of the simplified undamped system. The ϑIT 
values apply to the measurement of the phase shift of the tire-exciter contact force and the ϑITm values 
apply to the measurement of the phase shift Φm(f) of the force measured in the tester (where the impact 
of the force of inertia of exciter’s vibration plate is not considered). Both graphs confirm the conjecture 
that the considering of the inertia of exciter’s vibration plate is a matter of minor importance. For both 
the front and rear suspension system, the results obtained are very close to the actual values (i.e. ϑIT and 
ϑITm are close to ϑ1). Over the ϑ1 range from zero to about 0.32 (very important from the point of view 
of diagnostics of motor car suspension system), errors are small, although greater for the rear suspension. 
Attention should be paid to the fact that for the system without suspension damping and for ω=ω0a 
(f=f0a), the absolute value of the derivative of angle Φ with respect to frequency ω approaches infinity, 
i.e. ϑIT and ϑITm approach zero, which shows that equation (34) is true. For the system with non-zero 
suspension damping and for ω=ω0a, the absolute value of the derivative of angle Φ with respect to 
frequency ω is higher than zero. This derivative is the smaller the greater the damping in the suspension. 
This results in growing ϑIT and ϑITm values, in accordance with equation (34).  
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For the Φ(ω) curves, representing the phase shift angle as a function of the excitation 
frequency, approximations of derivatives of angle Φ with respect to frequency ω were deter-
mined (with using a difference quotient) to enable the calculation of ϑIT and ϑITm for 
frequency ω0a. Figure 14 a and b shows the effect of using the Buzzi method for data of the 
front (Figure a) and rear (Figure b) suspension system of a medium-class motor car Astra 
Van. The ϑIT and ϑITm coefficients have been calculated for the phase shift angle and for 
natural frequency ω0a=2∙π∙f0a of the simplified undamped system. The ϑIT values apply to 
the measurement of the phase shift of the tire-exciter contact force and the ϑITm values 
apply to the measurement of the phase shift Φm(f) of the force measured in the tester 
(where the impact of the force of inertia of exciter’s vibration plate is not considered). Both 
graphs confirm the conjecture that the considering of the inertia of exciter’s vibration plate 
is a matter of minor importance. For both the front and rear suspension system, the results 
obtained are very close to the actual values (i.e. ϑIT and ϑITm are close to ϑ1). Over the ϑ1 
range from zero to about 0.32 (very important from the point of view of diagnostics of motor 
car suspension system), errors are small, although greater for the rear suspension. Attention 
should be paid to the fact that for the system without suspension damping and for  
ω=ω0a (f=f0a), the absolute value of the derivative of angle Φ with respect to frequency ω 
approaches infinity, i.e. ϑIT and ϑITm approach zero, which shows that equation (34) is true. 
For the system with non-zero suspension damping and for ω=ω0a, the absolute value of the 
derivative of angle Φ with respect to frequency ω is higher than zero. This derivative is the 
smaller the greater the damping in the suspension. This results in growing ϑIT and ϑITm 
values, in accordance with equation (34). 

Fig. 14. Results obtained with using the Buzzi method for data of the front (a) and rear (b) suspension 

of the Astra Van. The ϑIT and ϑITm coefficient values (Theta_IT and Theta_ITm, respectively, in the 

graphs) have been calculated for the phase shift angle and for ω0a=2∙π∙f0a of the simplified system. 

The ϑIT values apply to the measurement of the phase shift of the tire-exciter contact force and the 

ϑITm values apply to the measurement of the phase shift of the force measured in the tester (where 

the impact of the force of inertia of exciter’s vibration plate is not considered) 
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Figures 15a and b show results of estimation of the relative sensitivity coefficient W%IT, 
which represents the relative percentage change in ϑIT caused by a one percent change in 
the excitation frequency ω. The W%IT coefficient values apply to the measurement of the 
phase shift of the tire-exciter contact force and the W%ITm values apply to the measure-
ment of the phase shift of the force measured in the tester (where the impact of the force 
of inertia of exciter’s vibration plate is not considered). These calculations were carried out 
for ω0a=2∙π∙f0a, corresponding to the natural frequency of the simplified undamped system 
shown in Figure 4a. The results indicate very low sensitivity of the method under analysis 
to the accuracy of determining the frequency for which the phase shift angle is measured 
and the ϑIT value is calculated. This sensitivity slightly rises (but for the front suspension 
system only) with a decrease in damping, i.e. with growing deterioration in the condition of 
vibration damping elements of the suspension system. Nevertheless, the sensitivity values 
still do not exceed 3 %/%, which is a very good point of this method. The results presented 
also indicate other considerable advantages of the Buzzi method [3]. It has been shown that 
any corrections to compensate the inertia of exciter’s vibration plate are of no importance 
in this method. 

The calculation results also show that this method is almost insensitive to the accuracy of 
determining the frequency at which the measurement is carried out. However, this low sensi-
tivity may cause difficulties with measurements of the phase shift angle and its first and 
second derivative with respect to the excitation frequency.

Fig. 15. Results obtained with using the Buzzi method for data of the front (a) and rear (b) suspension 

of the Astra Van. The relative sensitivity coefficient W%
IT represents the relative percentage change 

in ϑIT caused by a one percent change in the excitation frequency ω. The W%
IT coefficient values apply 

to the measurement of the phase shift of the tire-exciter contact force and the W%
ITm values apply 

to the measurement of the phase shift of the force measured in the tester (where the impact of the 

force of inertia of exciter’s vibration plate is not considered). The calculations have been carried out 

for ω0a=2∙π∙f0a of the simplified system 
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5. Conclusions 

The linear ‘quarter-car’ models used, and the frequency domain analysis provide grounds 
for general qualitative and (within a limited scope) quantitative assessment of usefulness of 
individual methods of evaluation of damping in suspension systems. In the two-degrees-of-
freedom (2DOF) model used in the work, the impact of vibration plate’s mass on test results 
is considered. In some methods, such a model is simplified to a one-degree-of-freedom 
(1DOF) model. Not always the simplification of this kind is reasonable. Designers of diagnostic 
suspension testers introduce corrections to the measurement results in order to compen-
sate the impact of weight of exciter’s vibration plate (by zeroing tester’s measuring systems 
before placing a vehicle on the tester). However, only very few of them consider a correc-
tion related to the inertia of the plate. Detailed conclusions concerning individual variants 
of the ‘theta’ method, analysed in this work, have been presented below. Table 3 presents 
a summary of the main remarks.

The ‘Calvo 1’ and ‘Calvo 2’ variants. Both produce similar results. Differences become apparent 
in the case of significant asymmetry in the curves characterizing the system under test, which 
not always takes place. These variants may be used to analyse the response of the system 
under test close to the 1st and 2nd resonance frequency. For the lower frequency, however, 
difficulties in the measurements may be encountered, related to the less distinct form of 
the maximum in the system response curve. The results presented here and obtained for 
the front and rear suspension systems of a medium-class motor car show that both of these 
variants are useful, but only for low and medium ϑ1 values (of up to ϑi=0.24), i.e. for shock 
absorbers being in medium and poor condition. If the assessment is based on measurements 
carried out close to the 2nd (higher) resonance frequency, then the force value measured 
must be corrected by the force of inertia of exciter’s vibration plate. In such a case, however, 
the assessment of the condition of the suspension system might be too optimistic.

The variant proposed by Ivan Mazůrek and Milan Klapka. The results presented indicate 
considerable disadvantages of this variant. It has been shown that a correction must be made 
here for the inertia of exciter’s vibration plate, because the measurement is carried out at the 
higher resonance frequency. This variant is very sensitive to the accuracy of determining the 
frequency at which the measurement is carried out. The said sensitivity rises with a decrease 
in damping, i.e. with growing deterioration in the condition of vibration damping elements of 
the suspension system. This must be considered a serious drawback of the variant in question. 

The variant proposed by Carlo Buzzi. This variant has important good points. Any corrections 
to compensate the inertia of exciter’s vibration plate are of no importance. The calculation 
results also show that in this case, the assessment of the condition of damping elements in 
the suspension system is almost insensitive to the accuracy of determining the frequency 
at which the measurement is carried out and to the accuracy of calculation of the relative 
damping in the suspension system. A weak point of this variant is the fact that the meas-
urements are carried out here at a low frequency, which may cause difficulties with meas-
urements of the phase shift angle and its first and second derivative with respect to the 
excitation frequency.
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Table 3. Summary of the main remarks 

The method Main advantages Main drawbacks
Recommendations 

for use
Necessary 

adjustments

Calvo 1

Insensitive to 
the asymmetry 
of the analyzed 
characteristics.

Measurement 
difficulties for 
the 1st resonance 
frequency.

2nd resonant 
frequency of the 
tested system. 

Lower range of 
relative damping 
(down to about 
0.24). 

Need to apply 
a correction resulting 
from the inertia 
of the vibration-
inducing plate (for 2nd 
resonance frequency).

For the indicated 2nd 
resonance frequency, 
it is too optimistic or 
too pessimistic for 
higher damping.

Calvo 2

Sensitive to the 
asymmetry of 
the analyzed 
characteristics. 

Measurement 
difficulties for 
the 1st resonance 
frequency.

As above As above

Mazůrek  
and Klapka

High sensitivity 
to the accuracy 
of determining 
the resonance 
frequency.

2nd resonant 
frequency of the 
tested system.

Need to apply 
a correction resulting 
from the inertia of the 
vibration-inducing 
plate.

Buzzi

No need to apply 
a correction 
resulting from 
the inertia of the 
vibration-inducing 
plate. 

Low sensitivity 
to the accuracy 
of determining 
the resonance 
frequency.

Low frequency 
tests are 
associated with 
measurement 
difficulties.

1st resonant 
frequency of the 
tested system.

For practical application, the author suggests using a combination of at least two considered 
methods. It is possible because described methods use similar hardware structure compo-
nents.
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6. Closing remarks and future work 

For all the variants of the ‘theta’ method, their correctness should be verified during calcu-
lations using non-linear models. Nonlinearities may change the behavior of the system and 
may be an interesting reason for specific isolating properties. It is important to put atten-
tion to dry friction in the suspension system, asymmetry of shock absorber damping curves, 
‘bouncing’, i.e. tire separation from the exciter as well as nonlinearities of suspension and tire 
elasticity characteristics. The impact of transient states arising from changes in the excita-
tion frequency during the diagnostic test should be evaluated. The results obtained must 
also be verified experimentally for the correctness and usefulness of the simulation test 
results to be assessed. 
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