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Abstract 

The following paper presents an innovative approach to determining vehicle precrash 
velocity when hitting an immovable obstacle facing forward. Precrash velocity is necessary 
in order to perform a crash reconstruction. It is needed for the time-space analysis of 
the events,  as well as to assess crash mitigation and to evaluate drivers’ technique and 
tactics. For this task, the authors are using Gaussian Process Regression (GPR). Such an 
approach offers a number of advantages over the currently used methods that prove to 
be outdated when considering modern vehicles. The mathematical model was trained on 
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a database shared by the National Highway Traffic Safety Administration. This database 
covers a large number of crash tests of different kind, however authors focus on frontal 
collisions of the subcompact car class. Due to low accuracy of linear methods used up till 
now, Authors developed an innovative approach to determine the EES parameter utilizing 
Gaussian process regression. The newly developed method is an effective and accurate 
way to determine the vehicle’s velocity and shows promising results, as is demonstrated 
in this paper.

Keywords: car crash reconstruction; EES; Gaussian Process Regression

1. Introduction

Vehicle crash analysis is an important branch of forensic science. The outcome of such inves-
tigation has proven to be vital evidence in court trials; therefore, the accuracy of the anal-
ysis is of upmost importance. Currently, there are three major approaches to crash velocity 
determination: graphical, comparative and analytical. Their reliability and accuracy can be 
questionable, especially when considering modern cars that utilise advanced materials or 
special structures. Additionally, the introduction of electric vehicles [2, 6] to the market 
forces the development of new methods suitable for different structural characteristics.

The linear models used thus far do not provide the proper accuracy when determining 
precrash velocity Vt, which is a critical factor during car-crash reconstruction [11]. The new 
method takes advantage of the nonlinear relationship between velocity Vt, mass m and 
deformation coefficient Cs which is the arithmetic mean of deformation depth. The currently 
used methods assume the relationship between equivalent energy speed (EES) [1, 8] and 
the Cs coefficient to be linear. This was done to simplify the calculations and decrease the 
required computational power as these methods were created in the nineteen-eighties.  

The NHTSA database covers crash test results of, among other types, frontal collisions. The 
linear approach revolves around the energy of the crash and assumes inelasticity of colli-
sions [5]. Based on the literature, the threshold of elasticity is set at 11 km/h. Such simplifica-
tion further decreases the reliability of energy methods.

The authors decided to develop a new approach to precrash velocity determination using 
Gaussian Process Regression (GPR) that has several advantages over the standard analyt-
ical approach. It can model complex non-linear relationships, which perfectly fits within the 
scope of this problem. GPR provides not only predictions but also estimates of uncertainty, 
offering valuable insights into the reliability of its forecasts. Another advantage is that it 
performs well with limited data; as in the case of crash testing, data collection is quite expen-
sive and it is difficult to cover an entire range of vehicles. 
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2. Data collection

The mathematical model is based on data shared by the National Highway Traffic Safety 
Administration from the United States. The NHTSA performs crash tests to evaluate the 
safety of vehicles and to provide consumers with information about their crashworthiness. 
Three types of tests are performed:

•	 Frontal Crash Tests: These tests simulate a head-on collision between two vehicles of 
the same weight and size. Vehicles are crashed into a rigid barrier at a specified speed.

•	 Side Impact Tests: Simulating a side-impact collision, these tests involve a moving 
barrier that impacts the side of a stationary vehicle. There are both driver-side and 
passenger-side tests.

•	 Rollover Resistance Tests: These tests assess a vehicle's propensity to roll over in 
a single-vehicle crash. They involve measuring the height and shape of a vehicle and 
using mathematical models to predict its rollover risk.

Crash tests are conducted using specialised equipment including crash test dummies 
equipped with sensors to measure forces exerted on the body as well as high speed cameras 
recording the crash from different angles in order to analyse vehicle structure and other 
recording instruments capturing crash forces, vehicle movement and structural integrity. 

After the crash tests, engineers and researchers analyse the collected data to assess the 
performance of the vehicle in terms of occupant protection, structural integrity and over-all 
safety. Results are then used to assign safety ratings to vehicles, which are made available to 
the public through programs like the New Car Assessment Program (NCAP).

3. Gaussian Process Regression

A regression problem is a common situation in which we would like to determine the value 
of a given quantity y based on known predictive factors x. This relationship between x and y 
is usually assumed to be the possibility to represent y as a function of x, the shape of which 
is usually unknown. While in some cases assuming the linear kind of relationship between 
inputs x and outputs y is sufficient, this is not the case when speaking of such nonlinear prob-
lems as precrash velocity prediction. To make matters worse, a high percentage of nonlinear 
approaches require rather copious amounts of data, which, in the case of the problem at 
hand, can be both tedious and costly. Therefore, Gaussian Process Regression (GPR) is the 
tool we will refer to when dealing with this issue.

Gaussian Process Regression is a non-parametric Bayesian approach, able to work without 
making any prior assumptions about the type of distribution assumed by the data [4, 9, 
10]. This family of models have a very large capacity, being able to learn very complicated 
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patterns due to not having any intrinsic or imposed bounds on the number of parameters 
used. The complexity of the resulting mapping between input and output is thus inferred 
from the data itself through Bayesian inference. 

Suppose that there exists an unknown functional relationship between the inputs (in this 
case, the vehicle mass, the length of the crash surface and the indents), which we will denote 
with x, and the outputs (precrash velocity), denoted by y. Our task is to obtain the best 
possible approximation of 
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will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 
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The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
1

2𝜆𝜆𝜆𝜆2 ⋅ 𝑑𝑑𝑑𝑑�𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′�
2

 (3) 

where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 

, f(x) = y for all values of x in the training set, while 
still being able to generalise this mapping to the previously unseen values of x. Since meas-
urements which were done to prepare the training data are subject to errors, in most cases, 
we assume that these errors follow the normal distribution 
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 for some θε>0. Thus, we 
assume that: 
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lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
1

2𝜆𝜆𝜆𝜆2 ⋅ 𝑑𝑑𝑑𝑑�𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′�
2

 (3) 

where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 

where ε is the random variable depicting the errors, which appear no matter how many 
measurements we take. Unlike in the most Bayesian frameworks, we will also assume that 
f(x), which in the vocabulary of GPR is termed as “signal”, is also a random variable, inde-
pendent from ε and with its own distinctive distribution. In general, we will assume that f(x) is 
a Gaussian process (hence the name of the method) and is thus completely characterised by 
its mean and covariance functions, which we will denote by μ and k, respectively. The mean 
function μ is defined as the one satisfying 
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have a very large capacity, being able to learn very complicated patterns due to not having any intrinsic 
or imposed bounds on the number of parameters used. The complexity of the resulting mapping between 
input and output is thus inferred from the data itself through Bayesian inference.  

Suppose that there exists an unknown functional relationship between the inputs (in this case, the vehicle 
mass, the length of the crash surface and the indents), which we will denote with 𝑥𝑥𝑥𝑥, and the outputs 
(precrash velocity), denoted by 𝑦𝑦𝑦𝑦. Our task is to obtain the best possible approximation of 𝑓𝑓𝑓𝑓:ℝ𝑛𝑛𝑛𝑛 → ℝ𝑚𝑚𝑚𝑚, 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑦𝑦𝑦𝑦 for all values of 𝑥𝑥𝑥𝑥 in the training set, while still being able to generalise this mapping to the 
previously unseen values of 𝑥𝑥𝑥𝑥. Since measurements which were done to prepare the training data are 
subject to errors, in most cases, we assume that these errors follow the normal distribution 𝑁𝑁𝑁𝑁(0,𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2) for 
some 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀 > 0. Thus, we assume that:  

 𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) + 𝜀𝜀𝜀𝜀 (1) 

where 𝜀𝜀𝜀𝜀 is the random variable depicting the errors, which appear no matter how many measurements 
we take. Unlike in the most Bayesian frameworks, we will also assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙), which in the 
vocabulary of GPR is termed as “signal”, is also a random variable, independent from 𝜀𝜀𝜀𝜀 and with its 
own distinctive distribution. In general, we will assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) is a Gaussian process (hence the name 
of the method) and is thus completely characterised by its mean and covariance functions, which we 
will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 

 𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝔼𝔼𝔼𝔼[(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙))(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙𝒙)) ] (2) 

The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
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where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 
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have a very large capacity, being able to learn very complicated patterns due to not having any intrinsic 
or imposed bounds on the number of parameters used. The complexity of the resulting mapping between 
input and output is thus inferred from the data itself through Bayesian inference.  

Suppose that there exists an unknown functional relationship between the inputs (in this case, the vehicle 
mass, the length of the crash surface and the indents), which we will denote with 𝑥𝑥𝑥𝑥, and the outputs 
(precrash velocity), denoted by 𝑦𝑦𝑦𝑦. Our task is to obtain the best possible approximation of 𝑓𝑓𝑓𝑓:ℝ𝑛𝑛𝑛𝑛 → ℝ𝑚𝑚𝑚𝑚, 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑦𝑦𝑦𝑦 for all values of 𝑥𝑥𝑥𝑥 in the training set, while still being able to generalise this mapping to the 
previously unseen values of 𝑥𝑥𝑥𝑥. Since measurements which were done to prepare the training data are 
subject to errors, in most cases, we assume that these errors follow the normal distribution 𝑁𝑁𝑁𝑁(0,𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2) for 
some 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀 > 0. Thus, we assume that:  

 𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) + 𝜀𝜀𝜀𝜀 (1) 

where 𝜀𝜀𝜀𝜀 is the random variable depicting the errors, which appear no matter how many measurements 
we take. Unlike in the most Bayesian frameworks, we will also assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙), which in the 
vocabulary of GPR is termed as “signal”, is also a random variable, independent from 𝜀𝜀𝜀𝜀 and with its 
own distinctive distribution. In general, we will assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) is a Gaussian process (hence the name 
of the method) and is thus completely characterised by its mean and covariance functions, which we 
will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 

 𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝔼𝔼𝔼𝔼[(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙))(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙𝒙)) ] (2) 

The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
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where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 

, i.e. it gives us the average value 
of f(x) for a given input x. To simplify the computations, the data is usually standardised to 
achieve 
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have a very large capacity, being able to learn very complicated patterns due to not having any intrinsic 
or imposed bounds on the number of parameters used. The complexity of the resulting mapping between 
input and output is thus inferred from the data itself through Bayesian inference.  

Suppose that there exists an unknown functional relationship between the inputs (in this case, the vehicle 
mass, the length of the crash surface and the indents), which we will denote with 𝑥𝑥𝑥𝑥, and the outputs 
(precrash velocity), denoted by 𝑦𝑦𝑦𝑦. Our task is to obtain the best possible approximation of 𝑓𝑓𝑓𝑓:ℝ𝑛𝑛𝑛𝑛 → ℝ𝑚𝑚𝑚𝑚, 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑦𝑦𝑦𝑦 for all values of 𝑥𝑥𝑥𝑥 in the training set, while still being able to generalise this mapping to the 
previously unseen values of 𝑥𝑥𝑥𝑥. Since measurements which were done to prepare the training data are 
subject to errors, in most cases, we assume that these errors follow the normal distribution 𝑁𝑁𝑁𝑁(0,𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2) for 
some 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀 > 0. Thus, we assume that:  

 𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) + 𝜀𝜀𝜀𝜀 (1) 

where 𝜀𝜀𝜀𝜀 is the random variable depicting the errors, which appear no matter how many measurements 
we take. Unlike in the most Bayesian frameworks, we will also assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙), which in the 
vocabulary of GPR is termed as “signal”, is also a random variable, independent from 𝜀𝜀𝜀𝜀 and with its 
own distinctive distribution. In general, we will assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) is a Gaussian process (hence the name 
of the method) and is thus completely characterised by its mean and covariance functions, which we 
will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 

 𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝔼𝔼𝔼𝔼[(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙))(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙𝒙)) ] (2) 

The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 
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where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 

. This enables us to perform inferencing solely based on the second function, 
which is the covariance function, also known as the kernel function. Its purpose is to model 
the dependence between the function values at distinct inputs in the following manner:
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have a very large capacity, being able to learn very complicated patterns due to not having any intrinsic 
or imposed bounds on the number of parameters used. The complexity of the resulting mapping between 
input and output is thus inferred from the data itself through Bayesian inference.  
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mass, the length of the crash surface and the indents), which we will denote with 𝑥𝑥𝑥𝑥, and the outputs 
(precrash velocity), denoted by 𝑦𝑦𝑦𝑦. Our task is to obtain the best possible approximation of 𝑓𝑓𝑓𝑓:ℝ𝑛𝑛𝑛𝑛 → ℝ𝑚𝑚𝑚𝑚, 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑦𝑦𝑦𝑦 for all values of 𝑥𝑥𝑥𝑥 in the training set, while still being able to generalise this mapping to the 
previously unseen values of 𝑥𝑥𝑥𝑥. Since measurements which were done to prepare the training data are 
subject to errors, in most cases, we assume that these errors follow the normal distribution 𝑁𝑁𝑁𝑁(0,𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2) for 
some 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀 > 0. Thus, we assume that:  

 𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) + 𝜀𝜀𝜀𝜀 (1) 

where 𝜀𝜀𝜀𝜀 is the random variable depicting the errors, which appear no matter how many measurements 
we take. Unlike in the most Bayesian frameworks, we will also assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙), which in the 
vocabulary of GPR is termed as “signal”, is also a random variable, independent from 𝜀𝜀𝜀𝜀 and with its 
own distinctive distribution. In general, we will assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) is a Gaussian process (hence the name 
of the method) and is thus completely characterised by its mean and covariance functions, which we 
will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 

 𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝔼𝔼𝔼𝔼[(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙))(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙𝒙)) ] (2) 

The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
1

2𝜆𝜆𝜆𝜆2 ⋅ 𝑑𝑑𝑑𝑑�𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′�
2

 (3) 

where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 

The selection of the kernel should take into account factors such as smoothness of the data, 
expected shape of the relationship between inputs and outputs, patterns which may appear 
in the data etc. If the dataset is sufficiently small, this choice can be dictated by data by trial-
and-error procedure, grid search or similar techniques. 

In general, the reasonable assumption regarding the kernel should be as follows – the closer 
two inputs lay, the greater the correlation between the outputs they produce (although 
assuming that the reverse implication holds would be a critical mistake). The RBF (radial 
basis function) kernel not only complies with said requirement but is also a rather expressive 
function for modelling many smooth relationships. The radial basis function kernel is given 
by the formula:
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have a very large capacity, being able to learn very complicated patterns due to not having any intrinsic 
or imposed bounds on the number of parameters used. The complexity of the resulting mapping between 
input and output is thus inferred from the data itself through Bayesian inference.  

Suppose that there exists an unknown functional relationship between the inputs (in this case, the vehicle 
mass, the length of the crash surface and the indents), which we will denote with 𝑥𝑥𝑥𝑥, and the outputs 
(precrash velocity), denoted by 𝑦𝑦𝑦𝑦. Our task is to obtain the best possible approximation of 𝑓𝑓𝑓𝑓:ℝ𝑛𝑛𝑛𝑛 → ℝ𝑚𝑚𝑚𝑚, 
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑦𝑦𝑦𝑦 for all values of 𝑥𝑥𝑥𝑥 in the training set, while still being able to generalise this mapping to the 
previously unseen values of 𝑥𝑥𝑥𝑥. Since measurements which were done to prepare the training data are 
subject to errors, in most cases, we assume that these errors follow the normal distribution 𝑁𝑁𝑁𝑁(0,𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2) for 
some 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀 > 0. Thus, we assume that:  

 𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) + 𝜀𝜀𝜀𝜀 (1) 

where 𝜀𝜀𝜀𝜀 is the random variable depicting the errors, which appear no matter how many measurements 
we take. Unlike in the most Bayesian frameworks, we will also assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙), which in the 
vocabulary of GPR is termed as “signal”, is also a random variable, independent from 𝜀𝜀𝜀𝜀 and with its 
own distinctive distribution. In general, we will assume that 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) is a Gaussian process (hence the name 
of the method) and is thus completely characterised by its mean and covariance functions, which we 
will denote by 𝜇𝜇𝜇𝜇 and 𝑘𝑘𝑘𝑘, respectively. The mean function 𝜇𝜇𝜇𝜇 is defined as the one satisfying 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙) =
 𝔼𝔼𝔼𝔼[𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙)], i.e. it gives us the average value of 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) for a given input 𝒙𝒙𝒙𝒙. To simplify the computations, 
the data is usually standardised to achieve 𝜇𝜇𝜇𝜇 𝜇 0. This enables us to perform inferencing solely based 
on the second function, which is the covariance function, also known as the kernel function. Its purpose 
is to model the dependence between the function values at distinct inputs in the following manner: 

 𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝔼𝔼𝔼𝔼[(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙))(𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙𝒙) − 𝜇𝜇𝜇𝜇(𝒙𝒙𝒙𝒙𝒙)) ] (2) 

The selection of the kernel should take into account factors such as smoothness of the data, expected 
shape of the relationship between inputs and outputs, patterns which may appear in the data etc. If the 
dataset is sufficiently small, this choice can be dictated by data by trial-and-error procedure, grid search 
or similar techniques.  

In general, the reasonable assumption regarding the kernel should be as follows – the closer two inputs 
lay, the greater the correlation between the outputs they produce (although assuming that the reverse 
implication holds would be a critical mistake). The RBF (radial basis function) kernel not only complies 
with said requirement but is also a rather expressive function for modelling many smooth relationships. 
The radial basis function kernel is given by the formula: 

 𝑘𝑘𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙𝒙𝒙,𝒙𝒙𝒙𝒙′) = 𝜎𝜎𝜎𝜎2𝑒𝑒𝑒𝑒−
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 (3) 

where 𝑑𝑑𝑑𝑑 denotes the distance between the inputs 𝒙𝒙𝒙𝒙 and 𝒙𝒙𝒙𝒙′, while 𝜆𝜆𝜆𝜆 and 𝜎𝜎𝜎𝜎 are hyperparameters of this 
kernel: 

The length-scale parameter 𝜆𝜆𝜆𝜆 determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered with data 
points extended by the squared value of 𝜆𝜆𝜆𝜆 via GPR becomes highly unstable and hard to rely on. 

The output/signal variance 𝜎𝜎𝜎𝜎2 determines the average distance of the model prediction from the mean. 
This parameter is common amongst most of the kernels, serving as a scale factor. 

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely done in 
practice due to it being difficult, especially when considering more complex kernels. Instead, we opt for 
maximum likelihood estimation [9] or grid search [7] as more time-efficient alternatives (although it 
should be noted that they might be less stable than Bayesian inference). 

Once we have decided on the choice of the kernel function, we can use the Gaussian process to draw a 
priori values along with the posterior function values conditional upon previous observations. 

Despite Gaussian processes being continuous, when we sample a function from a Gaussian process, we 
do it by computing its values on a selected set of inputs. This is usually done by drawing outputs for 
these points by the means of a multivariate normal distribution with a covariance matrix generated by 
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where d denotes the distance between the inputs x and x', while λ and σ are hyperparame-
ters of this kernel.

The length-scale parameter λ determines the length of the highly nonlinear fragments of the 
approximated function. In general, extrapolation beyond the scope of the interval covered 
with data points extended by the squared value of λ via GPR becomes highly unstable and 
hard to rely on.

The output/signal variance σ2 determines the average distance of the model prediction from 
the mean. This parameter is common amongst most of the kernels, serving as a scale factor.

Although these hyperparameters can be found via the Bayesian approach [3], this is rarely 
done in practice due to it being difficult, especially when considering more complex kernels. 
Instead, we opt for maximum likelihood estimation [9] or grid search [7] as more time-effi-
cient alternatives (although it should be noted that they might be less stable than Bayesian 
inference).

Once we have decided on the choice of the kernel function, we can use the Gaussian process 
to draw a priori values along with the posterior function values conditional upon previous 
observations.

Despite Gaussian processes being continuous, when we sample a function from a Gaussian 
process, we do it by computing its values on a selected set of inputs. This is usually done 
by drawing outputs for these points by the means of a multivariate normal distribution 
with a covariance matrix generated by the kernel in the following manner – we first collect 
a vector of input points X = (x1,…,xn) and compute the covariance matrix as:
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the kernel in the following manner – we first collect a vector of input points 𝑋𝑋𝑋𝑋 = (𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) and 
compute the covariance matrix as: 

 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) = �𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��1≤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  (4) 

Thus, we sample the distribution 𝑁𝑁𝑁𝑁(𝟎𝟎𝟎𝟎,𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋)), where 𝟎𝟎𝟎𝟎 stands for a mean function which equals 0 
everywhere – this can be done by applying the previously mentioned simplification. With the obtained 
vector 𝒇𝒇𝒇𝒇𝑋𝑋𝑋𝑋, we can turn it into an observation vector by adding sampled error terms. 

Thus far, we have not incorporated the data used to train the regressor in these considerations. We shall 
do it now – suppose that we have at our disposal a set of pairs of points {(𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡) ∶   𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}. Let us denote 
by 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 the set of inputs from this dataset and by 𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 the respective outputs. If we’d like to make new 
predictions on the new points, we should create a distribution based on the previous observations. Thus, 
we will assume that: 

 �
𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇
𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿
�  ~  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, �𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2 ⋅ 𝑰𝑰𝑰𝑰𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋)

𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) �� (5)  

where 𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) is defined as in (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) and 𝑋𝑋𝑋𝑋 stands for a vector of new inputs. Additionally, 𝑰𝑰𝑰𝑰 in the 
formula above stands for identity matrix of size |𝑇𝑇𝑇𝑇|. Since we know both new inputs and the previous 
dataset, we can derive the conditional distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 based on this knowledge, thus obtaining: 

 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ~  𝑁𝑁𝑁𝑁(𝛍𝛍𝛍𝛍, Σ) (6) 

where: 𝛍𝛍𝛍𝛍 = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 , 

            Σ = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) − 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ⋅ 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋). 

It is a noteworthy fact, that the posterior distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can also be perceived as the Gaussian Process, 
but this does not matter in our considerations. Therefore, predicting 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can be done via taking the means 
𝛍𝛍𝛍𝛍 or sampling from said Gaussian Process describing the posterior 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇. 

4. Results 

The best obtained model utilizing RBF and white noise kernels. Its parameters are summarised in Table 
1. Figures 1 and 2 show approximation error in absolute and percentage value respectively. 

 

Tab. 1. Parameters of the best obtained model utilizing RBF and white noise kernels 

Parameter name Value (approximately) 
Length-scale 𝑙𝑙𝑙𝑙 : 10.29580 
Signal variance 𝜎𝜎𝜎𝜎2:  218.49159 
White noise variance 𝜃𝜃𝜃𝜃2: 4.67163 

 
 
 

Thus, we sample the distribution N(0,K(X,X)), where 0 stands for a mean function which 
equals 0 everywhere – this can be done by applying the previously mentioned simplification. 
With the obtained vector fX, we can turn it into an observation vector by adding sampled 
error terms.

Thus far, we have not incorporated the data used to train the regressor in these consider-
ations. We shall do it now – suppose that we have at our disposal a set of pairs of points  
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the kernel in the following manner – we first collect a vector of input points 𝑋𝑋𝑋𝑋 = (𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) and 
compute the covariance matrix as: 

 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) = �𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��1≤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  (4) 

Thus, we sample the distribution 𝑁𝑁𝑁𝑁(𝟎𝟎𝟎𝟎,𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋)), where 𝟎𝟎𝟎𝟎 stands for a mean function which equals 0 
everywhere – this can be done by applying the previously mentioned simplification. With the obtained 
vector 𝒇𝒇𝒇𝒇𝑋𝑋𝑋𝑋, we can turn it into an observation vector by adding sampled error terms. 

Thus far, we have not incorporated the data used to train the regressor in these considerations. We shall 
do it now – suppose that we have at our disposal a set of pairs of points {(𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡) ∶   𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}. Let us denote 
by 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 the set of inputs from this dataset and by 𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 the respective outputs. If we’d like to make new 
predictions on the new points, we should create a distribution based on the previous observations. Thus, 
we will assume that: 

 �
𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇
𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿
�  ~  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, �𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2 ⋅ 𝑰𝑰𝑰𝑰𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋)

𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) �� (5)  

where 𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) is defined as in (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) and 𝑋𝑋𝑋𝑋 stands for a vector of new inputs. Additionally, 𝑰𝑰𝑰𝑰 in the 
formula above stands for identity matrix of size |𝑇𝑇𝑇𝑇|. Since we know both new inputs and the previous 
dataset, we can derive the conditional distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 based on this knowledge, thus obtaining: 

 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ~  𝑁𝑁𝑁𝑁(𝛍𝛍𝛍𝛍, Σ) (6) 

where: 𝛍𝛍𝛍𝛍 = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 , 

            Σ = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) − 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ⋅ 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋). 

It is a noteworthy fact, that the posterior distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can also be perceived as the Gaussian Process, 
but this does not matter in our considerations. Therefore, predicting 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can be done via taking the means 
𝛍𝛍𝛍𝛍 or sampling from said Gaussian Process describing the posterior 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇. 

4. Results 

The best obtained model utilizing RBF and white noise kernels. Its parameters are summarised in Table 
1. Figures 1 and 2 show approximation error in absolute and percentage value respectively. 

 

Tab. 1. Parameters of the best obtained model utilizing RBF and white noise kernels 

Parameter name Value (approximately) 
Length-scale 𝑙𝑙𝑙𝑙 : 10.29580 
Signal variance 𝜎𝜎𝜎𝜎2:  218.49159 
White noise variance 𝜃𝜃𝜃𝜃2: 4.67163 

 
 
 

. Let us denote by XT the set of inputs from this dataset and by YT the 
respective outputs. If we’d like to make new predictions on the new points, we should create 
a distribution based on the previous observations. Thus, we will assume that:
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the kernel in the following manner – we first collect a vector of input points 𝑋𝑋𝑋𝑋 = (𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛) and 
compute the covariance matrix as: 

 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) = �𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗��1≤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  (4) 

Thus, we sample the distribution 𝑁𝑁𝑁𝑁(𝟎𝟎𝟎𝟎,𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋)), where 𝟎𝟎𝟎𝟎 stands for a mean function which equals 0 
everywhere – this can be done by applying the previously mentioned simplification. With the obtained 
vector 𝒇𝒇𝒇𝒇𝑋𝑋𝑋𝑋, we can turn it into an observation vector by adding sampled error terms. 

Thus far, we have not incorporated the data used to train the regressor in these considerations. We shall 
do it now – suppose that we have at our disposal a set of pairs of points {(𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡) ∶   𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}. Let us denote 
by 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 the set of inputs from this dataset and by 𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 the respective outputs. If we’d like to make new 
predictions on the new points, we should create a distribution based on the previous observations. Thus, 
we will assume that: 
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where K(A,B) is defined as in (KER) and X stands for a vector of new inputs. Additionally, I in 
the formula above stands for identity matrix of size |T|. Since we know both new inputs and 
the previous dataset, we can derive the conditional distribution of f X based on this knowl-
edge, thus obtaining:
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Thus, we sample the distribution 𝑁𝑁𝑁𝑁(𝟎𝟎𝟎𝟎,𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋)), where 𝟎𝟎𝟎𝟎 stands for a mean function which equals 0 
everywhere – this can be done by applying the previously mentioned simplification. With the obtained 
vector 𝒇𝒇𝒇𝒇𝑋𝑋𝑋𝑋, we can turn it into an observation vector by adding sampled error terms. 

Thus far, we have not incorporated the data used to train the regressor in these considerations. We shall 
do it now – suppose that we have at our disposal a set of pairs of points {(𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡) ∶   𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡}. Let us denote 
by 𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 the set of inputs from this dataset and by 𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 the respective outputs. If we’d like to make new 
predictions on the new points, we should create a distribution based on the previous observations. Thus, 
we will assume that: 

 �
𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇
𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿
�  ~  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, �𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2 ⋅ 𝑰𝑰𝑰𝑰𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋)

𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) �� (5)  

where 𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) is defined as in (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) and 𝑋𝑋𝑋𝑋 stands for a vector of new inputs. Additionally, 𝑰𝑰𝑰𝑰 in the 
formula above stands for identity matrix of size |𝑇𝑇𝑇𝑇|. Since we know both new inputs and the previous 
dataset, we can derive the conditional distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 based on this knowledge, thus obtaining: 

 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ~  𝑁𝑁𝑁𝑁(𝛍𝛍𝛍𝛍, Σ) (6) 

where: 𝛍𝛍𝛍𝛍 = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 , 

            Σ = 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋) − 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) ⋅ [𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜀𝜀𝜀𝜀2𝑰𝑰𝑰𝑰]−1𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇 ⋅ 𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑋𝑋𝑋𝑋). 

It is a noteworthy fact, that the posterior distribution of 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can also be perceived as the Gaussian Process, 
but this does not matter in our considerations. Therefore, predicting 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿 can be done via taking the means 
𝛍𝛍𝛍𝛍 or sampling from said Gaussian Process describing the posterior 𝒇𝒇𝒇𝒇𝑿𝑿𝑿𝑿|𝑋𝑋𝑋𝑋,𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇 ,𝑌𝑌𝑌𝑌𝑇𝑇𝑇𝑇. 

4. Results 

The best obtained model utilizing RBF and white noise kernels. Its parameters are summarised in Table 
1. Figures 1 and 2 show approximation error in absolute and percentage value respectively. 

 

Tab. 1. Parameters of the best obtained model utilizing RBF and white noise kernels 

Parameter name Value (approximately) 
Length-scale 𝑙𝑙𝑙𝑙 : 10.29580 
Signal variance 𝜎𝜎𝜎𝜎2:  218.49159 
White noise variance 𝜃𝜃𝜃𝜃2: 4.67163 

 
 
 

It is a noteworthy fact, that the posterior distribution of f X can also be perceived as the 
Gaussian Process, but this does not matter in our considerations. Therefore, predicting f X 
can be done via taking the means μ or sampling from said Gaussian Process describing the 
posterior f X |X,XT,YT.

4. Results

The best obtained model utilizing RBF and white noise kernels. Its parameters are summa-
rised in Table 1. Figures 1 and 2 show approximation error in absolute and percentage value 
respectively.

Tab. 1. Parameters of the best obtained model utilizing RBF and white noise kernels

Parameter name Value (approximately)

Length-scale l : 10.29580

Signal variance σ2: 218.49159

White noise variance θ2: 4.67163
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Fig. 1. Approximation error vs observation ID on test data

Fig. 2. Percent approximation error vs observation ID on test data

The resulting model scores mean absolute error of magnitude 1.22 m/s (on the test dataset, 
which consists of 20% of the whole NHTSA dataset for the compact car class), which corre-
sponds to a mean absolute percentage error of 8.30%. The observant reader would surely 
notice why the percentage error is not a reliant measure of the regression by taking a closer 
look at both the error plots and their extreme values – heavy underestimation by over 8m/s 
is equivalent to a less than 40% percentage error, while smaller overestimation of around 
7m/s yields over 75% of percentage error. While most of the predictions are within the 2m/s 
error margin, some outliers to this rule are visible in the approximation error plot. 
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To allow the reader to more easily compare between predicted and observed data points, we 
present predictions (along with the uncertainty margins) vs actual observations in Figure 3.

Fig. 3. Predicted vs observed test data

5. Conclusions

A Gaussian Process Regression model for precrash velocity estimation based on the damage 
done to the car as well as its mass and width was generated. The proposed methodology 
objectively yields better results than methods based on linear regression. The performance 
of the model is beyond satisfactory. It does not only provide better estimates of precrash 
speed but also supplies the user with the uncertainty margins, leading to a clearer picture for 
both scientific and civil investigators.

In the future, the authors plan to work on a dedicated handheld device for velocity determi-
nation. Such a device would scan the deformed portion of the vehicle by means of a ranging 
laser or photogrammetry, measuring the Cs coefficient and instantly producing the precrash 
speed. 
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