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Abstract 

Forming car platoons and managing them through automation allows cars to travel with 
shorter gaps, which contributes to increasing road throughput, lowering fuel use, and cutting 
emissions. However, minimizing inter-vehicle spacing must comply with the principle of 
string stability. This paper introduces a Linear Quadratic Integral Regulator (LQIR) tailored 
for the Adaptive Cruise Control (ACC) strategy within a platoon of vehicles. The regulator 
integrates two additional states to guarantee both effective tracking and preservation of 
string stability. Furthermore, a heuristic procedure is proposed to select the Constant Time 
Headway Policy (CTHP) as a means of achieving stability. The selection routine combines 
an examination of the magnitude frequency response with an inspection of the pole–zero 
distribution of the spacing-error transfer function between successive vehicles. Using this 
approach, a comparative investigation is carried out for two autonomous ACC architectures: 
one based on absolute position feedback and another on measured inter-vehicle distance.
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1. Introduction

Automated car platoons are a crucial part of intelligent transportation systems [1] that 
represent a promising approach to improve highway efficiency or dedicated lane(s). Auton-
omous car control aims to enhance driver safety and decrease accident rates by removing 
driver intervention from the driving system [2]. Fully automated cruise control systems have 
become an integral part of modern highway designs, with a focus on improving traffic flow 
and overall freeway efficiency [3, 4].

Recently, ACC systems have become a common feature in passenger cars today. Instead 
of the driver needing to frequently adjust the throttle and brake pedals, the ACC system 
can assume control of the car based on the driver's selected speed. Thus, this system also 
provides the advantage of mitigating driver fatigue during extended trips [5]. These technolo-
gies utilize built-in sensors—most commonly radar—to detect both the speed difference and 
the gap between the car and the one ahead. The collected data is subsequently processed 
by a control system, which adjusts the throttle or brake of the subject car as needed. The 
ACC is introduced as an enhanced iteration of the traditional cruise control (CC) system [6, 7, 
8]. Recent experimental results [9] and reports [10] suggest that commercially deployed ACC 
systems do not achieve string stable, highlighting the need for further research on advanced 
ACC systems.

Two properties of the ACC platoon are important: Individual car stability, which is the pertur-
bations converges to zero for all followers, and string stability [11], which implies that distur-
bances on the leading car do not undergo amplification as they propagate downstream. 
However individual car stability is easily achieved. The current research focuses on the well-
known ACC technology, a driver assistance system created to maintain a desired spacing 
by adjusting the car's velocity based on the changes in the velocity of the lead car [12, 13]. 
The interdependence of string stability and spacing policies is a crucial consideration in the 
design of an ACC system controller. String stability and spacing policy are mutually binding, 
which can be found in [14]. String stability is generally interpreted as the property of inter-
connected systems to remain asymptotically stable [15]. For the ACC platoons, the authors of 
[16] proposed evaluating string stability using the infinity norm of the transfer function that 
describes how distance errors propagate. Meanwhile, [17] presented a practical method that 
accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alter-
native methodologies for analyzing string stability have also been outlined in [18] and [19].

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations 
is added to the controller, while string stability is ensured by choosing the CTHP through 
a  novel heuristic approach, addressing the stability conditions mentioned in [15]. This 
approach involves determining the transfer function for spacing errors for two consecutive 
cars. Subsequently, the stability of the platoon is assessed for two ACC configurations: one 
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based on location and the other based on spacing. Using the plot displays the frequency 
response of spacing errors transfer functions, a solution for string stability among inter-con-
nected cars has been developed. This solution enables the selection of CTHP to satisfy the 
first stability condition as proposed by [15]. To satisfy the second stability requirement, the 
constant time headway parameter is further increased, and the pole–zero distribution of 
the spacing-error transfer function is examined. From this analysis, an updated value of the 
CTHP is obtained following the criterion discussed in [15]. Subsequently, simulation experi-
ments are carried out to confirm the effectiveness of the proposed heuristic method in guar-
anteeing string stability.

This study is organized as follows: In Section 2, we first consider the modeling of cars. The 
adaptive cruise control design approach is presented in Section 3. In Section 4, the stability 
analysis of the car platoon is presented. In Section 5, the performance validation is imple-
mented and in Section 6, conclusions will close this study.

2. Methods

2.1. Modeling of Car 

The car's dynamics is represented by a nonlinear model that incorporates various factors 
such as the powertrain, aerodynamics drag road, tyre resistance and gravity. Nonlinear car 
dynamics pose challenges for platoon design, requiring simplified models. In [21], a linearized 
model for car longitudinal dynamics is introduced. Describing the balance of forces acting on 
the car's longitudinal axis, Newton's second law can be expressed as follows:
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1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

here, 
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function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 being the air density, 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 representing the car frontal area and 

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 109, No. 3, 2025 
https://doi.org/10.14669/AM/210423 

 
leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 representing 
the drag coefficient of the car. The gravitational force component is represented by 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 with 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 representing the road slope. 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 

1( ) ( ),x x a G x
v

v t P R R R
m

= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 is the force due to rolling 
resistance at the wheels with 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 
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= − − −            (1) 

here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

 representing the modified resistance coefficient to take 
account of cornering resistances.

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car 
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leading car do not undergo amplification as they propagate downstream. However individual car 
stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 
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here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 

The equation above exhibits nonlinearity concerning the longitudinal velocity of the car xv , linearization 
can be achieved by employing a first-order Taylor approximation around the equilibrium point 

0 0 0, ,v P β . At equilibrium at / 0xdv dt = , Eq. 1 can be solved for: 

, 
linearization can be achieved by employing a first-order Taylor approximation around the 
equilibrium point 
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stability is easily achieved. The current reseach focuses on the well-known ACC technology, a driver 
assistance system created to maintain a desired spacing by adjusting the car's velocity based on the 
changes in the velocity of the lead car [12, 13]. The interdependence of string stabilityyand 
spacingppolicies is a crucial consideration in the design of an ACC system controller. String stability 
and spacing policy are mutually binding, which can be found in [14]. String stability is generally 
interpreted as the property of interconnected systems to remain asymptotically stable [15]. For the ACC 
platoons, the authors of [16] proposed evaluating string stability using the infinity norm of the transfer 
function that describes how distance errors propagate. Meanwhile, [17] presented a practical method 
that accounts for time delays and dynamic lags inherent in car longitudinal motion. Several alternative 
methodologies for analyzing string stability have also been outlined in [18] and [19]. 

The objective of this study is to create a LQIR for ACC cars in a platoon, ensuring both good 
performance and string stability. To achieve the desired performance, a dual integrations is added to the 
controller, while string stability is ensured by choosing the CTHP through a novel heuristic approach, 
addressing the stability conditions mentioned in [15]. This approach involves determining the transfer 
function for spacing errors for two consecutive cars. Subsequently, the stability of the platoon is assessed 
for two ACC configurations: one based on location and the other based on spacing. Using the plot 
displays the frequency response of spacing errors transfer functions, a solution for string stability among 
inter-connected cars has been developed. This solution enables the selection of CTHP to satisfy the first 
stability condition as proposed by [15]. To satisfy the second stability requirement, the constant time 
headway parameter is further increased, and the pole–zero distribution of the spacing-error transfer 
function is examined. From this analysis, an updated value of the CTHP is obtained following the 
criterion discussed in [15]. Subsequently, simulation experiments are carried out to confirm the 
effectiveness of the proposed heuristic method in guaranteeing string stability. 

This study is organized as follows: In Section 2, we first consider the modeling of cars. The adaptive 
cruise control design approach is presented in Section 3. In Section 4, the stability analysis of the car 
platoon is presented. In Section 5, the performance validation is implemented and in Section 6, 
conclusions will close this study. 

2. Methods 
2.1. Modeling of Car  

The car's dynamics is represented by a nonlinear model that incorporates various factors such as the 
powertrain,aerodynamics drag road, tyre resistance and gravity. Nonlinear car dynamics pose challenges 
for platoon design, requiring simplified models. In [21], a linearized model for car longitudinal dynamics 
is introduced. Describing the balance of forces acting on the car's longitudinal axis, Newton's second 
law can be expressed as follows: 
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here, xv  represent longitudinal speed of the car, wv  is the wind velocity. vm  is the car mass, xP  is the 

longitudinal tyre force, 20.5 ( )a v v v x wR S A v vρ= +  is the force due to aerodynamic drag with vρ being 
the air density, vA  representing the car frontal area and vS  representing the drag coefficient of the car. 
The gravitational force component is represented by G vR m gsinβ= with β  representing the road slope. 

x R vR C m gcosβ=  is the force due to rolling resistance at the wheels with RC  representing the modified 
resistance coefficient to take account of cornering resistances. 
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The car model depicted in Figure 1 was constructed using the linearized equations and can be expressed 
in the form of a transfer function. 
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Figure 2 illustrates the structure of a car platoon, which consists of one lead car followed by n trailing 
cars. For analysis, it is assumed that the entire platoon travels from left to right. The location of the ith 
car , measured from a fixed roadside reference point (0), is represented as iz . The separation between 
each pair of adjacent cars, as detected by onboard sensors, is denoted by id , while il  refers to the length 
of the car. 

The leading car employs a cruise control (CC) system implemented with a proportional-integral (PI) 
controller based on the formulation in Eq. 2. Each following car in the platoon uses an ACC strategy to 
maintain the appropriate spacing between itself and the car directly ahead. The primary goal of these 
controllers is to ensure that every car consistently keeps a target gap from its predecessor, as specified 
by CTHP: 
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Figure 2 illustrates the structure of a car platoon, which consists of one lead car followed by 
n trailing cars. For analysis, it is assumed that the entire platoon travels from left to right. 
The location of the ith car, measured from a fixed roadside reference point (0), is represented 
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as zi. The separation between each pair of adjacent cars, as detected by onboard sensors, is 
denoted by di, while li refers to the length of the car.

The leading car employs a cruise control (CC) system implemented with a proportional-in-
tegral (PI) controller based on the formulation in Eq. 2. Each following car in the platoon 
uses an ACC strategy to maintain the appropriate spacing between itself and the car directly 
ahead. The primary goal of these controllers is to ensure that every car consistently keeps a 
target gap from its predecessor, as specified by CTHP:
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In this context, r0 denotes the minimum spacing required when cars are stationary, while bi 
indicates the time headway assigned to the ith car. As each car accelerates, the location zi−1 
of the preceding car introduces a parabolic disturbance. To address this, the ACC controller 
must incorporate dual integrators to successfully mitigate such disturbances. Because of 
this requirement, traditional PID controllers are unsuitable, and a LQR with dual integrations 
– referred to as LQI²R – is selected instead. The design of the LQI²R controller necessitates 
an augmented plant model with two integrators, applicable for both types of ACC configura-
tions: those based on absolute position and those based on inter-car spacing.

2.2.1. ACC cars Control Structure based on Location
The distance error of the car i with respect to the car i-1 in scenarios of [15] is defined as:
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where Di,ref is the desired distance for two consecutive cars, consisting of the length li−1 of 
the preceding car.

The ACC configuration based on location with the desired spacing Eq. 6 is described in [22] 
zi,ref = zi−1 − r0 as a reference and yiz = zi − bivi as an output signal, is denoted in Figure 3. 
Considering the desired spacing Eq. 6, the control error, as expressed in equation Eq. 6, 
is obtained.
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The ACC configuration does not rely on information from the measuring device and may not 
be implemented, as the location zi−1 of the preceding car is unknown. To address this limi-
tation, the ACC structure can be reconfigured, resulting in an equivalent control structure as 
shown in Figure 3. This reconfigured structure can effectively utilize the radar sensor meas-
urement and is suitable for implementation.
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It is important to highlight that in Figure 4, r0 does not act as a reference signal. The control 
error is still defined according to Eq. 7, while the position zi−1 of the preceding car is regarded 
as an external disturbance.

To capture this behavior, the car’s extended state-space representation is constructed by 
enhancing the model in Eq. 3 with two additional integrators inserted into the error channel.
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The LQI²R controller was chosen specifically to eliminate the parabolic disturbances caused by the 
location 1iz −  of the car ahead. For the state-space model described in Eq. 9, the structure of the LQI²R 
controller is constructed as follows: 
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In this formulation, izK  denotes the matrix of state feedback gains, with the coefficients 1zk  through 4zk  

representing its individual elements. The state vector is defined as 1 2 3 4[ , , , ]Tiz z z z zx x x x x= .  

The optimization procedure entails computing the control input izu that minimizes a performance index 

uizJ . This index encompasses both the performance characteristic requirement and the limitations of 
controller input, typically expressed as: 

0
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∞
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where 0TQ Q= ≥  and 0TR R= ≥ are positive determine weighting matrices. For obtaining a solution 
to the optimal controller provided by Eq. 10, it is essential that the linear time-invariant system is 
stabilizable, a condition satisfied by the system described by Eq. 9. According to linear optimal control 
theory, the gain izK that minimizes  Eq. 11 has the following form: 

1( ) .T T
iz iz iz iz izK P b Rb b RA−= +           (12) 

 
Fig. 3. Position-based ACC system for car structure 

where the matrix P is the solution of the Algebraic Riccati Equation: 

1( ) 0.T T T T
iz iz iz iz iz iz iz izA RA R Q A Rb b Rb P b RA−− + − + =          (13) 

2.2.2. ACC Cars Control Structure based on Distance: 

When the target spacing ,i refD  is considered as the reference input and the actual spacing iD , obtained 
from onboard sensors, is used as the controlled output, the system corresponds to the spacing-based 
ACC configuration described in [21] and illustrated in Figure 4. In this case, the control error is defined 
as: 

The LQI²R controller was chosen specifically to eliminate the parabolic disturbances caused 
by the location zi−1 of the car ahead. For the state-space model described in Eq. 9, the struc-
ture of the LQI²R controller is constructed as follows:

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 109, No. 3, 2025 
https://doi.org/10.14669/AM/210423 

 

.iz iz iz iz iz
T

iz iz iz

x A x b u

y C x

= +⇒ 
=


          (9) 

The LQI²R controller was chosen specifically to eliminate the parabolic disturbances caused by the 
location 1iz −  of the car ahead. For the state-space model described in Eq. 9, the structure of the LQI²R 
controller is constructed as follows: 

1 2 3 4( ) ( ( ) ) .iz iz iz z i z i z iz z izu K x k v k D k d k d dδ τ τ δ τ τ τ= − = + + +∫ ∫ ∫         (10) 

In this formulation, izK  denotes the matrix of state feedback gains, with the coefficients 1zk  through 4zk  

representing its individual elements. The state vector is defined as 1 2 3 4[ , , , ]Tiz z z z zx x x x x= .  

The optimization procedure entails computing the control input izu that minimizes a performance index 

uizJ . This index encompasses both the performance characteristic requirement and the limitations of 

controller input, typically expressed as: 

0

( , ) ( ) ,T T
iz iz iz iz iz izJ x u x Qx u Ru dτ

∞

= +∫                (11) 

where 0TQ Q= ≥  and 0TR R= ≥ are positive determine weighting matrices. For obtaining a solution 
to the optimal controller provided by Eq. 10, it is essential that the linear time-invariant system is 
stabilizable, a condition satisfied by the system described by Eq. 9. According to linear optimal control 
theory, the gain izK that minimizes  Eq. 11 has the following form: 

1( ) .T T
iz iz iz iz izK P b Rb b RA−= +           (12) 

 
Fig. 3. Position-based ACC system for car structure 

where the matrix P is the solution of the Algebraic Riccati Equation: 

1( ) 0.T T T T
iz iz iz iz iz iz iz izA RA R Q A Rb b Rb P b RA−− + − + =          (13) 

2.2.2. ACC Cars Control Structure based on Distance: 

When the target spacing ,i refD  is considered as the reference input and the actual spacing iD , obtained 
from onboard sensors, is used as the controlled output, the system corresponds to the spacing-based 
ACC configuration described in [21] and illustrated in Figure 4. In this case, the control error is defined 
as: 

In this formulation, Kiz denotes the matrix of state feedback gains, with the coefficients K1z  
through K4z representing its individual elements. The state vector is defined as 
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2.2.2. ACC Cars Control Structure based on Distance: 

When the target spacing ,i refD  is considered as the reference input and the actual spacing iD , obtained 
from onboard sensors, is used as the controlled output, the system corresponds to the spacing-based 
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. 

The optimization procedure entails computing the control input uiz that minimizes a perfor-
mance index Juiz. This index encompasses both the performance characteristic requirement 
and the limitations of controller input, typically expressed as:

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 109, No. 3, 2025 
https://doi.org/10.14669/AM/210423 

 

.iz iz iz iz iz
T

iz iz iz

x A x b u

y C x

= +⇒ 
=


          (9) 

The LQI²R controller was chosen specifically to eliminate the parabolic disturbances caused by the 
location 1iz −  of the car ahead. For the state-space model described in Eq. 9, the structure of the LQI²R 
controller is constructed as follows: 

1 2 3 4( ) ( ( ) ) .iz iz iz z i z i z iz z izu K x k v k D k d k d dδ τ τ δ τ τ τ= − = + + +∫ ∫ ∫         (10) 

In this formulation, izK  denotes the matrix of state feedback gains, with the coefficients 1zk  through 4zk  

representing its individual elements. The state vector is defined as 1 2 3 4[ , , , ]Tiz z z z zx x x x x= .  

The optimization procedure entails computing the control input izu that minimizes a performance index 

uizJ . This index encompasses both the performance characteristic requirement and the limitations of 

controller input, typically expressed as: 

0

( , ) ( ) ,T T
iz iz iz iz iz izJ x u x Qx u Ru dτ

∞

= +∫                (11) 

where 0TQ Q= ≥  and 0TR R= ≥ are positive determine weighting matrices. For obtaining a solution 
to the optimal controller provided by Eq. 10, it is essential that the linear time-invariant system is 
stabilizable, a condition satisfied by the system described by Eq. 9. According to linear optimal control 
theory, the gain izK that minimizes  Eq. 11 has the following form: 

1( ) .T T
iz iz iz iz izK P b Rb b RA−= +           (12) 

 
Fig. 3. Position-based ACC system for car structure 

where the matrix P is the solution of the Algebraic Riccati Equation: 

1( ) 0.T T T T
iz iz iz iz iz iz iz izA RA R Q A Rb b Rb P b RA−− + − + =          (13) 

2.2.2. ACC Cars Control Structure based on Distance: 
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The location 1iz − of the preceding car, which is not directly measured but instead  introduced by radar 
(sensor), introduces a disturbance in the controlled system. To compensate for its negative effect, two 
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The inclusion of the two integrators in Eq. 16  is achieved in this ACC structure by selecting the  LQI2R 
controller, which is described by: 
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Under this configuration, the error term iDδ  is defined according to Eq. 14, while the corresponding 
control signal iDu  is obtained by optimizing a cost function analogous to that in Eq. 11. 
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2.3. Stability analysis of car platoon 

Because car platoons using ACC systems may be prone to string instability, it is essential to establish a 
method for evaluating platoon stability. Such a method enables the determination of whether the platoon 
remains stable or becomes unstable over time. This analysis focuses on the propagation of spacing errors 
within the ACC framework. A platoon is classified as string stable if these spacing errors do not grow 
larger as they move down the line of cars. Conversely, if instability is present, the magnitude of spacing 
errors increases from one car to the next, which can ultimately undermine platoon control and raise the 
risk of accidents or unsafe situations. Therefore, achieving string stability is fundamental to ensuring 
that the platoon operates in a safe and synchronized manner. 

For both scenarios, the transfer functions representing the correlation between the spacing errors of two 
consecutive cars in the platoon will be defined as follows: 
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2.3. Stability analysis of car platoon

Because car platoons using ACC systems may be prone to string instability, it is essential to 
establish a method for evaluating platoon stability. Such a method enables the determina-
tion of whether the platoon remains stable or becomes unstable over time. This analysis 
focuses on the propagation of spacing errors within the ACC framework. A platoon is classi-
fied as string stable if these spacing errors do not grow larger as they move down the line of 
cars. Conversely, if instability is present, the magnitude of spacing errors increases from one 
car to the next, which can ultimately undermine platoon control and raise the risk of acci-
dents or unsafe situations. Therefore, achieving string stability is fundamental to ensuring 
that the platoon operates in a safe and synchronized manner.

For both scenarios, the transfer functions representing the correlation between the spacing 
errors of two consecutive cars in the platoon will be defined as follows:
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let ( )i sδ  be the Laplace transform of ( )i tδ . 

In the context of string stability, the condition of the spacing errors of two consecutive cars in the platoon 
can be expressed in the frequency domain as follows: 

1 ... 2.i i n for iδ δ δ− ∞ ∞ ∞≥ ≥ ≥ ≥                   (19) 

This implies that the spacing error of two consecutive cars in the platoon should progressively decrease 
along the platoon, beginning from the first car following the leader. The stability condition Eq. 19 may 
be builded using the theory of linear systems, depending on the transfer function Eq. 18  and its impulse 

response ( )i sΞ , following the relation 11( )i i itδ δ −∞ ∞≤ Ξ , where 1
0

( ) ( )i it t dt
∞

Ξ = Ξ∫ . 

Accordingly, the necessary and sufficient requirement for string stability can be formulated as 

1( ) 1i tΞ ≤ . In [13], this condition was reformulated and expressed through the following equivalent 
relations: 

( ) 1,i jω ∞Ξ ≤            (20) 

( ) 1, 0.i t tΞ > ∀ ≥            (21) 

The condition Eq. 20 ensures that 2 2....i nδ δ≥ ≥ , this implies that the spacing errors decreases as 
they propagate towards the rear of the platoon [15]. Besides, a heuristic approach is introduced to 
analyze the stability of an autonomous car string in a platoon, with a specific focus on inequality Eq. 20. 
Ascending values of headway time ( 0ib > ) are considered, and the corresponding frequency response 
of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
inequality Eq. 20 is satisfied. Of particular interest is the minimum value of ib for which the maximum 
magnitude is less than 1. 

The condition Eq. 21 ensures that The condition Eq. 21 ensures that ....i nδ δ∞ ∞≥ ≥ , and thus, the 
transfer function ( )i sΞ must satisfy two necessary conditions as given in [20] in order to fulfill condition 
Eq. 21: 

- The leading poles of ( )i sΞ  must not consist of a complex-conjugate pair, since such a configuration 
would generate oscillatory dynamics. 

- In addition, no zeros of ( )i sΞ  should appear to the right of all system poles on the complex plane. 

To comply with condition Eq. 21 and achieve a reliable form of string stability, these two 
requirements are checked using the pole–zero map of the transfer function ( )i sΞ . The procedure 
involves analyzing ib  values that exceed the minimum threshold already identified as fulfilling 
condition Eq. 20. 

let 

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 109, No. 3, 2025 
https://doi.org/10.14669/AM/210423 

 

1

( )( ) ,
( )

i
i

i

ss
s

δ
δ −

Ξ =                          (18) 

let ( )i sδ  be the Laplace transform of ( )i tδ . 

In the context of string stability, the condition of the spacing errors of two consecutive cars in the platoon 
can be expressed in the frequency domain as follows: 

1 ... 2.i i n for iδ δ δ− ∞ ∞ ∞≥ ≥ ≥ ≥                   (19) 

This implies that the spacing error of two consecutive cars in the platoon should progressively decrease 
along the platoon, beginning from the first car following the leader. The stability condition Eq. 19 may 
be builded using the theory of linear systems, depending on the transfer function Eq. 18  and its impulse 

response ( )i sΞ , following the relation 11( )i i itδ δ −∞ ∞≤ Ξ , where 1
0

( ) ( )i it t dt
∞

Ξ = Ξ∫ . 

Accordingly, the necessary and sufficient requirement for string stability can be formulated as 

1( ) 1i tΞ ≤ . In [13], this condition was reformulated and expressed through the following equivalent 
relations: 

( ) 1,i jω ∞Ξ ≤            (20) 

( ) 1, 0.i t tΞ > ∀ ≥            (21) 

The condition Eq. 20 ensures that 2 2....i nδ δ≥ ≥ , this implies that the spacing errors decreases as 
they propagate towards the rear of the platoon [15]. Besides, a heuristic approach is introduced to 
analyze the stability of an autonomous car string in a platoon, with a specific focus on inequality Eq. 20. 
Ascending values of headway time ( 0ib > ) are considered, and the corresponding frequency response 
of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
inequality Eq. 20 is satisfied. Of particular interest is the minimum value of ib for which the maximum 
magnitude is less than 1. 

The condition Eq. 21 ensures that The condition Eq. 21 ensures that ....i nδ δ∞ ∞≥ ≥ , and thus, the 
transfer function ( )i sΞ must satisfy two necessary conditions as given in [20] in order to fulfill condition 
Eq. 21: 

- The leading poles of ( )i sΞ  must not consist of a complex-conjugate pair, since such a configuration 
would generate oscillatory dynamics. 

- In addition, no zeros of ( )i sΞ  should appear to the right of all system poles on the complex plane. 

To comply with condition Eq. 21 and achieve a reliable form of string stability, these two 
requirements are checked using the pole–zero map of the transfer function ( )i sΞ . The procedure 
involves analyzing ib  values that exceed the minimum threshold already identified as fulfilling 
condition Eq. 20. 

 be the Laplace transform of 

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 109, No. 3, 2025 
https://doi.org/10.14669/AM/210423 

 

1

( )( ) ,
( )

i
i

i

ss
s

δ
δ −

Ξ =                          (18) 

let ( )i sδ  be the Laplace transform of ( )i tδ . 

In the context of string stability, the condition of the spacing errors of two consecutive cars in the platoon 
can be expressed in the frequency domain as follows: 

1 ... 2.i i n for iδ δ δ− ∞ ∞ ∞≥ ≥ ≥ ≥                   (19) 

This implies that the spacing error of two consecutive cars in the platoon should progressively decrease 
along the platoon, beginning from the first car following the leader. The stability condition Eq. 19 may 
be builded using the theory of linear systems, depending on the transfer function Eq. 18  and its impulse 

response ( )i sΞ , following the relation 11( )i i itδ δ −∞ ∞≤ Ξ , where 1
0

( ) ( )i it t dt
∞

Ξ = Ξ∫ . 

Accordingly, the necessary and sufficient requirement for string stability can be formulated as 

1( ) 1i tΞ ≤ . In [13], this condition was reformulated and expressed through the following equivalent 
relations: 

( ) 1,i jω ∞Ξ ≤            (20) 

( ) 1, 0.i t tΞ > ∀ ≥            (21) 

The condition Eq. 20 ensures that 2 2....i nδ δ≥ ≥ , this implies that the spacing errors decreases as 
they propagate towards the rear of the platoon [15]. Besides, a heuristic approach is introduced to 
analyze the stability of an autonomous car string in a platoon, with a specific focus on inequality Eq. 20. 
Ascending values of headway time ( 0ib > ) are considered, and the corresponding frequency response 
of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
inequality Eq. 20 is satisfied. Of particular interest is the minimum value of ib for which the maximum 
magnitude is less than 1. 

The condition Eq. 21 ensures that The condition Eq. 21 ensures that ....i nδ δ∞ ∞≥ ≥ , and thus, the 
transfer function ( )i sΞ must satisfy two necessary conditions as given in [20] in order to fulfill condition 
Eq. 21: 

- The leading poles of ( )i sΞ  must not consist of a complex-conjugate pair, since such a configuration 
would generate oscillatory dynamics. 

- In addition, no zeros of ( )i sΞ  should appear to the right of all system poles on the complex plane. 

To comply with condition Eq. 21 and achieve a reliable form of string stability, these two 
requirements are checked using the pole–zero map of the transfer function ( )i sΞ . The procedure 
involves analyzing ib  values that exceed the minimum threshold already identified as fulfilling 
condition Eq. 20. 

.

In the context of string stability, the condition of the spacing errors of two consecutive cars 
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This implies that the spacing error of two consecutive cars in the platoon should progres-
sively decrease along the platoon, beginning from the first car following the leader. The 
stability condition Eq. 19 may be builded using the theory of linear systems, depending on 
the transfer function Eq. 18 and its impulse response 
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response ( )i sΞ , following the relation 11( )i i itδ δ −∞ ∞≤ Ξ , where 1
0
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∞

Ξ = Ξ∫ . 

Accordingly, the necessary and sufficient requirement for string stability can be formulated as 

1( ) 1i tΞ ≤ . In [13], this condition was reformulated and expressed through the following equivalent 
relations: 

( ) 1,i jω ∞Ξ ≤            (20) 

( ) 1, 0.i t tΞ > ∀ ≥            (21) 

The condition Eq. 20 ensures that 2 2....i nδ δ≥ ≥ , this implies that the spacing errors decreases as 
they propagate towards the rear of the platoon [15]. Besides, a heuristic approach is introduced to 
analyze the stability of an autonomous car string in a platoon, with a specific focus on inequality Eq. 20. 
Ascending values of headway time ( 0ib > ) are considered, and the corresponding frequency response 
of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
inequality Eq. 20 is satisfied. Of particular interest is the minimum value of ib for which the maximum 
magnitude is less than 1. 

The condition Eq. 21 ensures that The condition Eq. 21 ensures that ....i nδ δ∞ ∞≥ ≥ , and thus, the 
transfer function ( )i sΞ must satisfy two necessary conditions as given in [20] in order to fulfill condition 
Eq. 21: 

- The leading poles of ( )i sΞ  must not consist of a complex-conjugate pair, since such a configuration 
would generate oscillatory dynamics. 

- In addition, no zeros of ( )i sΞ  should appear to the right of all system poles on the complex plane. 

To comply with condition Eq. 21 and achieve a reliable form of string stability, these two 
requirements are checked using the pole–zero map of the transfer function ( )i sΞ . The procedure 
involves analyzing ib  values that exceed the minimum threshold already identified as fulfilling 
condition Eq. 20. 
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Ascending values of headway time ( 0ib > ) are considered, and the corresponding frequency response 
of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
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of ( )i jωΞ is plotted, checking the condition ( )i jωΞ for 0ω > by testing the maximum magnitude of 
frequency response. if the maximum magnitude is less than 1, the string is considered stable since the 
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would generate oscillatory dynamics. 

- In addition, no zeros of ( )i sΞ  should appear to the right of all system poles on the complex plane. 

To comply with condition Eq. 21 and achieve a reliable form of string stability, these two 
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inequality Eq. 20 is satisfied. Of particular interest is the minimum value of ib for which the maximum 
magnitude is less than 1. 
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they propagate towards the rear of the platoon [15]. Besides, a heuristic approach is introduced to 
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2.3.1. Stability analysis of ACC system based on location
Spacing error is initially considered:
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The structure algorithm in Eq. 10 can be reformulated as follows: 

1 2 3 4 .iz z iz z i z iz z izu k z k z k kδ δ= + + +                             (24) 

Using these expressions in the car model in Eq. 3, λ is ignored for a flat road (no inclination): 

.v i i v izz z K uς + =                                          (25) 

Replacing Eq. 23 into Eq. 25 results in: 

1 1 1 1( ) ( ) .v i i i v i i v iz v iz v izz z b z z K u Kς ς ς δ δ− − − −+ − + − = +                      (26) 

After a simple calculation, it results: 

( 1)( ) .v i z i iz iz iz izK u b u u δ δ− − − = +                        (27) 

Bring Eq. 24 into Eq. 27, 

1 2 3 ( 1) 4 ( 1)( ( ) ( ).iz iz v z iz z iz z i z iz i iz z i z iz i izK k k k b k bδ δ δ δ δ δ δ δ δ δ−−+ = + + − − + − −                              (28) 

By applying the unilateral Laplace transform to Eq. 28 under zero initial conditions—one obtain a 
closed-form spacing-error transfer function for the location-based ACC architecture. Eliminating the 
state variables in the transformed equations yields ( )iz sΞ , which maps the predecessor’s (or reference) 
position signal to the follower’s spacing error. This representation provides the basis for subsequent 
frequency-response analysis and pole–zero inspection used to enforce the non-negativity and string-
stability requirements. 
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2.3.2. Stability analysis of ACC system based on distance 

Using an analogous procedure to that adopted for the location-based ACC scheme, the spacing error can 
be formulated while incorporating the parameter ib . 

0 .iD i i ir b v Dδ = + −                                      (30) 

Differentiating the above equation yields:
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2.3.2. Stability analysis of ACC system based on distance 

Using an analogous procedure to that adopted for the location-based ACC scheme, the spacing error can 
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0 .iD i i ir b v Dδ = + −                                      (30) 
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representation provides the basis for subsequent frequency-response analysis and pole–
zero inspection used to enforce the non-negativity and string-stability requirements.
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2.3.2. Stability analysis of ACC system based on distance
Using an analogous procedure to that adopted for the location-based ACC scheme, the 
spacing error can be formulated while incorporating the parameter bi.
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And subsequently, by differentiating both sides of Eq. 30 twice with respect to time, we 
obtain:
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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3. Results and discussion 

Numerical simulations were conducted to analyze the performance of an autonomous cars homogeneous 
platoon. Two ACC configurations, namely location-based and spacing-based, were considered along 
with the CTHP method. The platoon consists of 13 homogeneous car, with the first car acting as the 
leader and the next 12 cars functioning as followers. The vehicle dynamics were represented using the 
transfer function in Eq. 3, with model parameters taken from [21]. Specifically, the amplification 
coefficient was set to 0.075vK =  and the associated time constant was 75.6v sς = . 

The lead car is governed by a velocity control system employing a CC-PID controller. Each following 
car maintains a specified gap from the car ahead, utilizing one of two ACC control strategies. 
Accordingly, the gain matrix izK  of the LQI²R controller (as specified in Eq. 10) is determined for the 
location-based ACC setup, while the matrix for the controller described in Eq. 17 is used for the spacing-
based ACC configuration. 

The spacing-error transfer functions were first constructed by substituting the prescribed matrices into 
Eqs. 29 and 35. In particular, the state-feedback gain vectors used in the derivation were izK =[-6846.8 -
4181.5 5573.8 1974.9] , iDK  = [6841  -4181.5 -5573.5 -1974.9]. Injecting these gains into the formulas 
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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leader and the next 12 cars functioning as followers. The vehicle dynamics were represented using the 
transfer function in Eq. 3, with model parameters taken from [21]. Specifically, the amplification 
coefficient was set to 0.075vK =  and the associated time constant was 75.6v sς = . 

The lead car is governed by a velocity control system employing a CC-PID controller. Each following 
car maintains a specified gap from the car ahead, utilizing one of two ACC control strategies. 
Accordingly, the gain matrix izK  of the LQI²R controller (as specified in Eq. 10) is determined for the 
location-based ACC setup, while the matrix for the controller described in Eq. 17 is used for the spacing-
based ACC configuration. 

The spacing-error transfer functions were first constructed by substituting the prescribed matrices into 
Eqs. 29 and 35. In particular, the state-feedback gain vectors used in the derivation were izK =[-6846.8 -
4181.5 5573.8 1974.9] , iDK  = [6841  -4181.5 -5573.5 -1974.9]. Injecting these gains into the formulas 

Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions – one 
can eliminate the state variables and obtain a closed-form transfer function for the spacing 
error between two successive cars in the spacing-based ACC architecture. The resulting 
expression where relevant) characterizes how inputs or disturbances associated with the 
predecessor car propagate to the follower’s spacing error, and serves as the basis for the 
subsequent frequency-response and pole–zero analyses used to assess string stability.
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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platoon. Two ACC configurations, namely location-based and spacing-based, were considered along 
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leader and the next 12 cars functioning as followers. The vehicle dynamics were represented using the 
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The lead car is governed by a velocity control system employing a CC-PID controller. Each following 
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Accordingly, the gain matrix izK  of the LQI²R controller (as specified in Eq. 10) is determined for the 
location-based ACC setup, while the matrix for the controller described in Eq. 17 is used for the spacing-
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Numerical simulations were conducted to analyze the performance of an autonomous cars 
homogeneous platoon. Two ACC configurations, namely location-based and spacing-based, 
were considered along with the CTHP method. The platoon consists of 13 homogeneous car, 
with the first car acting as the leader and the next 12 cars functioning as followers. The vehicle 
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dynamics were represented using the transfer function in Eq. 3, with model parameters 
taken from [21]. Specifically, the amplification coefficient was set to 
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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Finally, taking the unilateral Laplace transform of Eq. 34 under zero initial conditions —one can 
eliminate the state variables and obtain a closed-form transfer function for the spacing error between 
two successive cars in the spacing-based ACC architecture. The resulting expression where relevant) 
characterizes how inputs or disturbances associated with the predecessor car propagate to the follower’s 
spacing error, and serves as the basis for the subsequent frequency-response and pole–zero analyses 
used to assess string stability. 
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3. Results and discussion 

Numerical simulations were conducted to analyze the performance of an autonomous cars homogeneous 
platoon. Two ACC configurations, namely location-based and spacing-based, were considered along 
with the CTHP method. The platoon consists of 13 homogeneous car, with the first car acting as the 
leader and the next 12 cars functioning as followers. The vehicle dynamics were represented using the 
transfer function in Eq. 3, with model parameters taken from [21]. Specifically, the amplification 
coefficient was set to 0.075vK =  and the associated time constant was 75.6v sς = . 

The lead car is governed by a velocity control system employing a CC-PID controller. Each following 
car maintains a specified gap from the car ahead, utilizing one of two ACC control strategies. 
Accordingly, the gain matrix izK  of the LQI²R controller (as specified in Eq. 10) is determined for the 
location-based ACC setup, while the matrix for the controller described in Eq. 17 is used for the spacing-
based ACC configuration. 

The spacing-error transfer functions were first constructed by substituting the prescribed matrices into 
Eqs. 29 and 35. In particular, the state-feedback gain vectors used in the derivation were izK =[-6846.8 -
4181.5 5573.8 1974.9] , iDK  = [6841  -4181.5 -5573.5 -1974.9]. Injecting these gains into the formulas 
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The lead car is governed by a velocity control system employing a CC-PID controller. Each 
following car maintains a specified gap from the car ahead, utilizing one of two ACC control 
strategies. Accordingly, the gain matrix Kiz of the LQI²R controller (as specified in Eq. 10) is 
determined for the location-based ACC setup, while the matrix for the controller described 
in Eq. 17 is used for the spacing-based ACC configuration.

The spacing-error transfer functions were first constructed by substituting the prescribed 
matrices into Eqs. 29 and 35. In particular, the state-feedback gain vectors used in the deriva-
tion were Kiz = [-6846.8 -4181.5 5573.8 1974.9], KiD = [6841 -4181.5 -5573.5 -1974.9]. Injecting 
these gains into the formulas yields explicit expressions for the spacing-error transfer func-
tions, which then serve as the basis for the subsequent frequency-response evaluation and 
pole–zero analysis used to assess string stability.

String stability analysis of the spacing errors for two consecutive cars, as described by Eq. 29, 
Eq. 35 involves using the string stability conditions from Eq. 19. These conditions are exam-
ined by plotting the magnitude frequency, as shown in Figure 5, Figure 6, while increasing  
bi from 0.65s to 2.6s.

For the spacing-based ACC configuration, the platoon of cars with bi = [0.65s; 0.9s; 1.5s; 2.6s], 
are robust string stability as the corresponding the maximum magnitude is equal to or less 
than the value 1, as in Figure 5. In contrast, for the location-based ACC configuration, the 
maximum magnitude as in Figure 6, the time headway bi was incrementally increased until  
bi = 2.6s, at which stability was achieved. We can see that the time headway is incrementally 
increased  with different values bi = [0.65s; 0.9s; 1.5s], the stability condition (20) is not satis-
fied (”weak stability”) as the maximum magnitude is exceed 1, the system is only stable with 
bi = 2.6s.

The result indicates that the spacing-based ACC structure will have a much smaller steady-
state distance value bi, which is an advantage compared to the distance-based ACC struc-
ture. To verify this, spacing errors δi for the ith car in a platoon were observed.

The evaluation of string stability was performed using the interconnected platoon simulator, 
which follows the configuration shown in Figure 2. The simulation considered a convoy of  
n = 13 cars, with each car length li = 5m and standstill spacing r0 = 2m To assess perfor-
mance, the spacing errors δi were plotted and examined. The test scenario began with the 
lead vehicle held at rest for 120 seconds to allow the platoon to reach equilibrium, after 
which a step input in the speed reference of vref of 23 m/s was applied to the system.
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The spacing errors for the spacing-based ACC configuration with a time headway of  
bi = 0.65s are shown in Figure 7, it illustrates that spacing errors for two consecutive cars 
are bounded and decrease along the platoon, indicating robust string stability. Similarly, for 
the location-based ACC configuration, the spacing errors are depicted in Figure 8, as spacing 
errors become increasingly amplified, the followers will gradually lose control and diverge 
from the trajectory of the platoon leader.

Achieving robust string stability requires the system’s impulse response to remain non-negative, 
thereby avoiding oscillatory sign changes that could amplify along the platoon. In practice, this 
constraint is enforced by satisfying two pole-zero conditions. Those conditions act as a design 
filter on the controller gains and time headway: they exclude configurations whose dynamics 
would introduce undershoot or peaking, and retain only transfer functions whose transient 
behavior is monotone and thus compatible with string-stable propagation of disturbances.

To determine the value of bi that satisfies the stability criterion (can see in subsection 2.3), 
it is necessary to examine the pole-zero maps of both Ξiz(s), ΞiD(s) while sweeping bi from  
bi = 0.65s to bi = 6.6s (Figures 9–10). The plots show that the condition required for a non-neg-
ative impulse response is not fulfilled until bi = 6.6s. For smaller bi, the dominant closed-loop 
poles appear as a complex-conjugate pair, which implies oscillatory transients and sign changes 
in the impulse response. When bi reaches 6.6s, these dominant poles move onto the real axis, 
yielding a monotone response that satisfies the non-negativity requirement. Under this setting, 
string stability is achieved only for the location-based ACC configuration, whose transfer func-
tion features a single real negative zero. In contrast, the spacing-based ACC configuration does 
not satisfy Eq. 21 for any choice of bi, because a complex-conjugate pair of zeros in its transfer 
function prevents the non-negative impulse-response condition from being met. 

Fig. 5. String stability plots based on distance with different values of headway time bi
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Fig. 6. String stability plots based on location with different values of headway time bi 

Fig. 7. Simulation result of spacing errors based on distance bi = 0.65s
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Fig. 8. Simulation result of spacing errors based on location bi = 0.65s 

Fig. 9. Transfer function analysis Ξiz(s) based on location: Pole-zero mapping
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Fig. 10. Transfer function analysis ΞiD(s) based on distance: Pole-zero mapping

4. Conclusions

This study investigates the synthesis of an LQI2R controller for vehicle platoons operating 
under ACC. The design target is twofold: attain accurate reference tracking at the individ-
ual-vehicle level and, simultaneously, guarantee string stability – i.e., prevent disturbances 
introduced by one vehicle from amplifying as they propagate along the convoy. To meet 
the latter requirement, we propose a pragmatic, transfer-function–driven tuning routine 
centered on the spacing-error dynamics. The routine proceeds in two coordinated stages. 
First, an appropriate time headway is selected by examining the frequency response of the 
spacing-error transfer function and choosing a value that limits the gain across the frequency 
band of interest, thereby curbing disturbance growth. Second, this choice is vetted against 
the pole–zero portrait of the resulting closed-loop transfer function to ensure favorable 
damping, left-half-plane pole placement, and the absence of problematic pole–zero inter-
actions that would compromise robustness. The LQI2R controller is instantiated for two ACC 
formulations: one that leverages absolute position (location-based feedback) and another 
that relies on inter-vehicle distance (spacing-based feedback). A comparative evaluation of 
platoon string stability under these two configurations is then conducted in simulation, using 
the proposed heuristic as the common design and assessment framework.
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