RESEARCH PAPER
Evaluation of the Chemical Stability of Diesel Oil with Using Turbiscan Stability Index (TSI)
 
More details
Hide details
1
Laboratorium Analityczne, Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Motoryzacji
2
Zakład Paliw i Biogospodarki, Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Motoryzacji
CORRESPONDING AUTHOR
Paweł Bukrejewski   

Laboratorium Analityczne, Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Motoryzacji
Publication date: 2020-06-30
Submission date: 2020-01-15
Final revision date: 2020-04-09
Acceptance date: 2020-05-06
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2020;88(2):5–18
KEYWORDS
TOPICS
ABSTRACT
For diesel oils containing fatty acid methyl esters (FAME), an important problem is their susceptibility to oxidation processes as this shortens the maximum storage time of such fuels and may result in deterioration of oil properties and thus affect the engine operation. One of the fuel ageing processes is the formation and release of resins from the fuel. The physical stability of mixtures may be evaluated by means of a physical stability index, determined with using a Turbiscan analyser. The authors attempted to explore the possibility of using this index for evaluating the changes that take place during the ageing of diesel oil. Additionally, the impact of the presence of selected metals on the fuel ageing process was examined. Within the research, diesel oil samples containing various metals were prepared and subjected to the ageing process. Spectrophotometric tests were also carried out with using a Turbiscan instrument. The samples were subjected to oxidation stability tests before and after the ageing process. The physical stability index and, additionally, the oxidation stability of the samples were examined by accelerated ageing methods.
 
REFERENCES (30)
1.
ASTM D 7525-09 – Standard Test Method for Oxidation Stability of Spark Ignition Fuel – Rapid Small Scale Oxidation Test (RSSOT).
 
2.
ASTM D 7545-09 – Standard Test Method for Oxidation Stability of Middle Distillate Fuels – Rapid Small Scale Oxidation Test (RSSOT).
 
3.
Balastre M., Argillier J.F., Allain C., Foissy A.: Role of polyelectrolyte dispersant in the settling behaviour of barium sulphate suspension. Colloids and Surfaces A: Physicochemical and m. Engineering Aspects. 2002, 211(2-3), 145–156, DOI: 10.1016/s0927-7757(02)00240-6.
 
4.
Bordes C., Garcia F., Snabre P., Frances C.: On-line characterization of particle size during an ultrafine wet grinding process. Powder Technology. 2002, 128(2-3), 218–228, DOI: 10.1016/S0032-5910(02)00190-0.
 
5.
Bouaid A., Martinez M., Aracil J.: Long storage stability of biodiesel from vegetable und frying oils. Fuel. 2007, 86(16), 2596–2602, DOI: 10.1016/j.fuel.2007.02.014.
 
6.
Chanamai R., McClements D. J.: Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions. Journal of Colloid and Interface Science. 2000, 225(1), 214–218, DOI:10.1006/jcis.2000.6766.
 
7.
Dalmazzone C., Noïk C.: Development of New "green" Demulsifiers for Oil Production. SPE International Symposium on Oilfield Chemistry. 2001, 65041, 1–9, DOI: 10.2118/65041-MS.
 
8.
Das L.M., Bora D.K., Pradhan S., Naik M.K., Naik S.N.: Long-term storage stability of biodiesel produced from Karanja oil. Fuel. 2009, 88(11), 2315–2318, DOI: 10.1016/j.fuel.2009.05.005.
 
9.
Dunn R.O.: Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). Journal of the American Oil Chemists' Society. 2002, 79(9), 915–920, DOI: 10.1007/s11746-002-0579-2.
 
10.
Gallo-Molina J. P., Ratkovich N., Álvarez Ó.: Multiscale Analysis of Water-in-Oil Emulsions: A Computational Fluid Dynamics Approach. Industrial & Engineering Chemistry Research. 2017, 56 (27), 7757–7767, DOI: 10.1021/acs.iecr.7b02246.
 
11.
Gallo-Molina J. P., Ratkovich N., Álvarez Ó.: The Application of Computational Fluid Dynamics to the Multiscale Study of Oil-in-Water Emulsions. Industrial & Engineering Chemistry Research. 2018, 57(2), 578–589, DOI: 10.1021/acs.iecr.7b03846.
 
12.
http://www.uni-export.com.pl/c... (accessed on 18.03.2018).
 
13.
Jarviste R.T., Muoni R.T., Soone J.H., Riisalu H.J., Zaidentsal A.L.: Diesel fuel oxidation in storage. Solid Fuel Chemistry. 2008, 42(2), 123–127. DOI: 10.3103/S0361521908020134.
 
14.
Leung D.Y.C., Koo B.C.P., Guo Y.: Degradation of biodiesel under different storage conditions. Bioresource Technology. 2006, 97(2), 250–256, DOI: 10.1016/j.biortech.2005.02.006.
 
15.
Marvan A., Kolesnikov I.M.: Mechanisms of the change in the properties of diesel fuels during storage. Chemistry and Technology of Fuels and Oils. 2007, 43(5), 382–385, DOI: 10.1007/s10553-007-0067-x.
 
16.
Mengual O., Meunier G., Cayré I., Puech K., Snabre P.: Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999, 152(1-2), 111–123, DOI: 10.1016/s0927-7757(98)00680-3.
 
17.
Mengual O., Meunier G., Cayré I., Puech K., Snabre, P: TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999, 50(2), 445– 456, DOI: 10.1016/s0039-9140(99)00129-0.
 
18.
Molenda J., Świgoń K., Urzędowska W., Sacha D.: Korelacja wyników badań stabilności oksydacyjnej biopaliw silnikowych uzyskanych za pomocą testu Rancimat oraz Petrooxy (Functional correlation between oxidation stability results of engine biofuels investigations obtained by means of Rancimat and Petrooxy tests). Nafta-Gaz. 2010, 66(10), 922–926.
 
19.
Peng F., Ke Y., Lu S., Zhao Y., Hu X., Deng Q.: Anion amphiphilic random copolymers and their performance as stabilizers for O/W nanoemulsions. RSC Advances. 2019, 9(26), 14692–14700, DOI: 10.1039/C9RA01383K.
 
20.
Peng F., Ke Y., Zhao Y., Hu X., Zhao X.: The influence of organically intercalated montmorillonites on the interfacial tension and structure of oil-in-water nanoemulsions. RSC Advances. 2019, 9(24), 13378–13385, DOI: 10.1039/C8RA10595B.
 
21.
Petrotest. PetroOxy operation manual.
 
22.
PN-EN 15751:2014 – Paliwa do pojazdów samochodowych – Estry metylowe kwasów tłuszczowych (FAME) jako samoistne paliwo i ich mieszaniny z olejem napędowym – Oznaczanie stabilności oksydacyjnej metodą przyspieszonego utleniania (Automotive fuels. Fatty acid methyl ester (FAME) fuel and blends with diesel fuel. Determination of oxidation stability by accelerated oxidation method).
 
23.
PN-EN 16091 – Ciekłe przetwory naftowe. Paliwa i mieszaniny ze średnich destylatów naftowych i estrów metylowych kwasów tłuszczowych (FAME). Oznaczanie stabilność oksydacyjnej szybkiego utleniania w małej skali (Liquid petroleum products. Middle distillates and fatty acid methyl ester (FAME) fuels and blends. Determination of oxidation stability by rapid small scale oxidation method).
 
24.
PN-EN 590: 2013-12 – Paliwa pojazdów samochodowych. Oleje napędowe. Wymagania i metody badań (Automotive fuels. Diesel. Requirements and test methods).
 
25.
Porras M., Solans C., Gonzalez C., Martinez A., Guinart A., Gutierrez J. M.: Studies of formation of W/O nano-emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004, 249(1-3), 115–118, DOI: 10.1016/j.colsurfa.2004.08.060.
 
26.
Rozporządzenie Minstra Gospodarki z dnia 9 października 2015 r. w sprawie wymagań jakościowych dla paliw ciekłych (Regulation of the Minister of Economy of 9 October 2015 on the quality requirements for diesel oil).
 
27.
Sacha D.: Nowe narzędzia badawcze do oceny właściwości użytkowych paliw do silników o zapłonie samoczynnym (New research tools for assessing the properties of diesel engine fuels). Nafta Gaz. 2012, 2, 133–137.
 
28.
Sacha D.: Wpływ FAME pochodzenia zwierzęcego na stabilność oksydacyjną olejów napędowych (Impact of FAME's derived from animal fats on diesel fuels oxidation stability). Nafta-Gaz. 2011, 9, 667– 673.
 
29.
Turbiscan operation manual.
 
30.
Xin J., Imahara H., Saka S.: Oxidation stability of biodiesel fuel as prepared by supercritical methanol. Fuel. 2008, 87(10-11), 1807–1813, DOI: 10.1016/j.fuel.2007.12.014.
 
eISSN:2084-476X