RESEARCH PAPER
Experimental study of precision angle encoder
 
More details
Hide details
1
Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University
2
Institute of Mechanical Science, Vilnius Gediminas Technical University, Lithuania
3
Projekty Badawcze, Lukasiewicz R&D Network Automotive Industry Institute
CORRESPONDING AUTHOR
Jonas Matijošius   

Institute of Mechanical Science, Vilnius Gediminas Technical University, Lithuania
Submission date: 2020-07-21
Final revision date: 2020-11-13
Acceptance date: 2020-11-24
Publication date: 2021-01-11
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2020;90(4):5–14
 
KEYWORDS
TOPICS
ABSTRACT
The application of new and advanced production processes plays an important role in the development of the manufacturing industry. This trend is especially relevant in the automotive industry, where each element must ensure high quality requirements. Therefore, automating the automotive manufacturing process is necessary to ensure the highest level of control methods. For this purpose, various sensors are used, the signals of which are analyzed and the control plan itself is adjusted. Experimental investigations of a precision angle encoder were performed in the work. During the research, the dynamic characteristics of the created stand were determined. Experimental studies yielded the results of an experimental study of a precision angle encoder when the system is subjected to shock and harmonic excitation. In order to elucidate the effect of oscillations on the accuracy of a high-resolution coded precision angle encoder, primary electrical signals and their change under oscillations were recorded. Studies have shown that high-resolution code-precision angle encoders have different design responses to dynamic effects depending on the direction of the vibrations acting.
 
REFERENCES (18)
1.
Alejandre I., Artes M.: Machine tool errors caused by optical linear encoders. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2004, 218, 113–122, DOI:10.1243/095440504772830255.
 
2.
Chong K.K., Wong C.W., Siaw F.L., Yew T.K., Ng S.S., Liang M.S., et al: Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System. Sensors. 2009, 9, 7849–7865, DOI:10.3390/s91007849.
 
3.
Ding S., Song Z., Wu W., Guo E., Huang X., Song A.: Geometric error modeling and compensation of horizontal CNC turning center for TI worm turning. International Journal of Mechanical Sciences. 2020, 167, 105266, DOI:10.1016/j.ijmecsci.2019.105266.
 
4.
Gao W., Kim S.W., Bosse H., Haitjema H., Chen Y.L., Lu X.D., et al: Measurement technologies for precision positioning. CIRP Annals. 2015, 64, 773–796, DOI:10.1016/j.cirp.2015.05.009.
 
5.
Gurauskis D., Kilikevičius A., Borodinas S., Kasparaitis A.: Analysis of geometric and thermal errors of linear encoder for real-time compensation. Sensors and Actuators A: Physical. 2019, 296, 145–154, DOI:10.1016/j.sna.2019.06.055.
 
6.
Jin C., Wu B., Hu Y., Yi P., Cheng Y.: Thermal characteristics of a CNC feed system under varying operating conditions. Precision Engineering. 2015, 42, 151–164, DOI:10.1016/j.precisioneng.2015.04.010.
 
7.
Lee C., Kim G.H., Lee S.K.: Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage. Measurement Science and Technology. 2011, 22, 105901, DOI:10.1088/0957-0233/22/10/105901.
 
8.
Li R., Lin W., Zhang J., Chen Z., Li C., Shuang Q.: Research on Thermal Deformation of Feed System for High-speed Vertical Machining Center. Procedia Computer Science. 2018, 131, 469–476, DOI:10.1016/j.procs.2018.04.232.
 
9.
Li X., Liu W., Pan Y., Liang B., Zhou M., Li H., et al: Monocular-vision-based contouring error detection and compensation for CNC machine tools. Precision Engineering. 2019, 55, 447–463, DOI:10.1016/j.precisioneng.2018.10.015.
 
10.
Liu T., Gao W., Zhang D., Zhang Y., Chang W., Liang C., et al: Analytical modeling for thermal errors of motorized spindle unit. International Journal of Machine Tools and Manufacture. 2017, 112, 53–70, DOI:10.1016/j.ijmachtools.2016.09.008.
 
11.
Rodriguez-Donate C., Osornio-Rios R.A., Rivera-Guillen J.R., de J. Romero-Troncoso R.: Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots. Sensors. 2011, 11, 4335–4357, DOI:10.3390/s110404335.
 
12.
Wozniak A., Jankowski M.: Variable speed compensation method of errors of probes for CNC machine tools. Precision Engineering. 2017, 49, 316–321, DOI:10.1016/j.precisioneng.2017.03.001.
 
13.
Yandayan T., Geckeler R.D., Just A., Krause M., Akgoz S.A., Aksulu M., et al: Investigations of interpolation errors of angle encoders for high precision angle metrology. Measurement Science and Technology. 2018, 29, 064007, DOI:10.1088/1361-6501/aabef6.
 
14.
Yang M., Yang J., Ding H.: A two-stage friction model and its application in tracking error pre-compensation of CNC machine tools. Precision Engineering. 2018, 51, 426–436, DOI:10.1016/j.precisioneng.2017.09.014.
 
15.
Ye G., Liu H., Wang Y., Lei B., Shi Y., Yin L., Lu B.: Ratiometric-Linearization-Based High-Precision Electronic Interpolator for Sinusoidal Optical Encoders. IEEE Transactions on Industrial Electronics. 2018, 65, 8224–8231, DOI:10.1109/TIE.2018.2798568.
 
16.
Ye G., Wu Z., Xu Z., Wang Y., Shi Y., Liu H.: Development of a digital interpolation module for high-resolution sinusoidal encoders. Sensors and Actuators A: Physical. 2019, 285, 501–510, DOI:10.1016/j.sna.2018.11.021.
 
17.
Ye G., Xing H., Liu H., Li Y., Lei B., Niu D., et al: Total error compensation of non-ideal signal parameters for Moiré encoders. Sensors and Actuators A: Physical. 2019, 298, 111539, DOI:10.1016/j.sna.2019.111539.
 
18.
Zapłata J., Pajor M.: Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering. 2019, 60, 160–166, DOI:10.1016/j.precisioneng.2019.07.011.
 
Declaration of availability
 
eISSN:2084-476X