RESEARCH PAPER
Testing of lubricating properties of mixtures of diesel and RME biofuels with the addition of linoleic acid
Leszek Gardyński 1  
,  
Jacek Caban 2  
 
 
More details
Hide details
1
Department of Materials Engineering, Lublin University of Technology, Polska
2
Faculty of Production Engineering, University of Life Sciences in Lublin, Polska
CORRESPONDING AUTHOR
Leszek Gardyński   

Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618, Lublin, Polska
Publication date: 2020-03-30
Submission date: 2020-02-16
Final revision date: 2020-03-10
Acceptance date: 2020-03-17
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2020;87(1):57–66
KEYWORDS
TOPICS
ABSTRACT
In connection with the limited resources of fossil fuels and the reduction of emissions and stimulation of agricultural areas, a very important indication is the search for alternative fuels – biofuels. The article presents the results of testing the lubricating properties of selected fuel mixtures. The lubricity of diesel fuel (DF), DF with 7% content of methyl esters of rapeseed oil fatty acids (RME), technical linoleic acid and DF with 7% content of RME and 10% content of technical linoleic acid was tested. The research was carried out on the author's research stand in the amount of 20 dm3 of mixture. Four parameters were taken into account: mass loss of samples, the footprint area of cooperation, diameter of equivalent wheel and average value of the coefficient of friction. It has been shown that the addition of linoleic acid to diesel fuel containing RME causes a significant increase in the mass loss of the samples and the footprint area of cooperation as well as its diameter of equivalent wheel, during lubrication with such a mixture. As a result of the addition of linoleic acid, no positive results were obtained, as the lubricating properties in this case deteriorated. Therefore, it is justified to continue looking for fuel additives that will eliminate this negative effect.
 
REFERENCES (39)
1.
Armas O., Gomez A., Ramos A.: Comparative study of pollutant emissions from engine starting with animal fat biodiesel and GTL fuels. Fuel. 2013, 113, 560–570, DOI: 10.1016/j.fuel.2013.06.010.
 
2.
Baczewski K., Kałdoński T.: Paliwa do silników o zapłonie samoczynnym. WKiŁ. Warszawa 2008.
 
3.
Barta D., Mruzek M.: Non-conventional drive and its possibilities of using in road vehicles of public transport. OPT-i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings, 2014, 2049–2061.
 
4.
Datta A., Mandal B.: A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable and Sustainable Energy Reviews. 2016, 57, 799–821, DOI: 10.1016/j.rser.2015.12.170.
 
5.
Drozdziel P.: The influence of the vehicle work organization conditions on the engine start-up parameters. Eksploatacja i Niezawodnosc-Maintenance And Reliability, 2008, 1(37), 72–74.
 
6.
Figlus T., Wilk A.: Evaluation of wearing influence on the noise level of devices with one-cylinder combustion engines. Scientific Journal of Silesian University of Technology-Series Transport. 2013, 78, 57–62.
 
7.
Gardyński L.: Stanowisko do badania odporności materiału elementów aparatury paliwowej na zużycie w warunkach smarowania, VII Sympozjum Naukowo-techniczne “Silniki spalinowe w zastosowaniach wojskowych” – SILWOJ 2005, 26–28 października 2005, Rynia, Polska, 2005, 93–100.
 
8.
Gardyński L., Kałdonek J.: Research on lubrication properties of selected raw plant and animal materials. Transport. 2020, 35, 20–25, DOI: 10.3846/transport.2020.11961.
 
9.
Geller D.P., Goodrum J.W.: Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel. 2004, 83, 2351–2356, DOI: 10.1016/j.fuel.2004.06.004.
 
10.
Głowacz A.: Recognition of acoustic signals of commutator motors. Applied Science. 2018, 8(12), 2630, DOI: 10.3390/app8122630.
 
11.
Górska, M. Bukrejewski P., Stobiecki J.: Selected physicochemical properties of water-fuel microemulsion as an alternative fuel for diesel engine. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 84(2), 45–56, DOI: 10.14669/AM.VOL84.ART4.
 
12.
Górski W., Ostaszewski W., Wiślicki B.: Krajowe oleje roślinne surowcem dla paliw silnikowych i olejów smarowych. Paliwa, oleje i smary w eksploatacji. 2001, 90, 5–11.
 
13.
Gustavsson F., Forsberg P., Jacobson S.: Friction and wear behaviour of low friction coatings in conventional and alternative fuels. Tribology International. 2012, 48, 22–28, DOI: 10.1016/j.triboint.2011.06.001.
 
14.
Hunicz J., Matijošius J., Rimkus A., Kilikevičius A., Kordos P., Mikulski M.: Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel. 2020, 268, 117350, DOI: 10.1016/j.fuel.2020.117350.
 
15.
Juknelevicius R., Rimkus A., Pukalskas S., Matijosius J.: Research of performance and emission indicators of the compression-ignition engine powered by hydrogen - Diesel mixtures. International Journal of Hydrogen Energy. 2019, 44(20), 10129–10138, DOI: 10.1016/j.ijhydene.2018.11.185.
 
16.
Knothe G., Steidley K.R.: Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy & Fuels. 2005, 19, 1192–1200, DOI: 10.1021/ef049684c.
 
17.
Kobus Z., Mazur J., Nadulski R., Guz T., Rydzak L., Zawiślak K.: Modification of rheological properties of vegetable oils. Przemysł Chemiczny. 2015, 94(10), 1728–1731, DOI: 10.15199/62.2015.10.15.
 
18.
Kuranc A.: The ecological aspect of a cold and hot starting of a spark ignition combustion engine. Eksploatacja i Niezawodnosc-Maintenance And Reliability. 2008, 2(38), 40–44.
 
19.
Longwic, R., Sander P., Nieoczym A., Lotko W., Krzysiak Z., Samociuk W., et al.: Effect of some properties of hydrocarbon fuels on self-ignition delay. Przemysł Chemiczny. 2017, 96(5), 1123–1127, DOI: 10.15199/62.2017.5.30.
 
20.
Macián V., Tormos B., Ruiz S., Miró G.: Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribology International. 2016, 94, 240–248, DOI: 10.1016/j.triboint.2015.08.028.
 
21.
Makareviciene V., Matijosius J., Pukalskas S., Vegneris R., Kazanceva I., Kazancev K.: The exploitation and environmental characteristics of diesel fuel containing rapeseed butyl esters. Transport. 2013, 28(2), 158–16, DOI: 10.3846/16484142.2013.801364.
 
22.
Matthews A., Franklin S., Holmberg K.: Tribological coatings: contact mechanisms and selection. Journal of Physics D: Applied Physics. 2007, 40(18), 5463–5475, DOI: 10.1088/0022-3727/40/18/S07.
 
23.
Mickevicius T., Slavinskas S., Wierzbicki S., Duda K.: The effect of diesel-biodiesel blends on the performance and exhaust emissions of a direct injection off-road diesel engine. Transport. 2014, 29(4), 440–448, DOI: 10.3846/16484142.2014.984331.
 
24.
Mikulski M., Wierzbicki S., Pietak A.: Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine. Chemical and Process Engineering-Inzynieria Chemiczna i Procesowa, 2015, 36(2), 225–238, DOI: 10.1515/cpe-2015-0015.
 
25.
Myczko A., Golimowska R.: Comparison of the properties of fatty acid methyl esters from various feedstocks. Journal of Research and Applications in Agricultural Engineering. 2011, 56(2), 111–117.
 
26.
Nazimek D., Slowik T., Zajac G., Krzaczek P., Kuranc A., Szyszlak-Barglowicz J., et al.: Studies on physicochemical properties of catalyst precursors for the preparation DME from ethanol. Przemysł Chemiczny. 2015, 94(10), 1772–1777, DOI: 10.15199/62.2015.10.24.
 
27.
Orynycz O.: Influence of tillage technology on energy efficiency of rapeseed plantation. Procedia Engineering. 2017, 182, 532–539, DOI: 10.1016/j.proeng.2017.03.148.
 
28.
Osipowicz T., Abramek K.F., Barta D., Drozdziel P., Lisowski M.: Analysis of possibilities to improve environmental operating parameters of modern compression - ignition engines. Advances in Science and Technology-Research Journal. 2018, 12(2), 206–213, DOI: 10.12913/22998624/91892.
 
29.
Rimkus A., Zaglinskis, J., Stravinskas, S., Rapalis, P., Matijosius, J., Bereczky, A.: Research on the combustion, energy and emission parameters of various concentration blends of hydrotreated vegetable oil biofuel and diesel fuel in a compression-ignition engine. Energies. 2019, 12(15), 2978, DOI: 10.3390/en12152978.
 
30.
Skrucany T., Ponicky J., Kendra M., Gnap J.: Comparison of railway and road passenger transport in energy consumption and GHG production. Proceedings of the Third International Conference on Traffic and Transport Engineering (ICTTE), Edited by: Cokorilo, O. 2016, 744–749.
 
31.
Sugami Y., Minami E., Saka S.: Renewable diesel production from rapeseed oil with hydrothermal hydrogenation and subsequent decarboxylation. Fuel. 2016, 166, 376–381, DOI: 10.1016/j.fuel.2015.10.117.
 
32.
Szlachta Z.: Zasilanie silników wysokoprężnych paliwami rzepakowymi. WKiŁ. Warszawa 2002.
 
33.
Walczak M., Pasierbiewicz K., Szala M.: Adhesion and mechanical properties of TiAlN and AlTiN magnetron sputtered coatings deposited on the DMSL titanium alloy substrate. Acta Physica Polonica A. 2019, 136(2), 294–298, DOI: 10.12693/APhysPolA.136.294.
 
34.
Wasiak A., Orynycz O.: The effects of energy contributions into subsidiary processes on energetic efficiency of biomass plantation supplying biofuel production system. Agriculture and Agricultural Science Procedia. 2015, 7, 292–300, DOI: 10.1016/j.aaspro.2015.12.050.
 
35.
Wasilewski J., Kuranc A., Szyszlak-Barglowicz J., Stoma M., Słowik T., Barta, D.: Assessment of efficiency of an agricultural tractor engine for different rotational speeds. 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, Lublin, Poland. Nov. 22-24, 2017. Farm Machinery And Processes Management In Sustainable Agriculture, Edited by: Lorencowicz E., Uziak J., Huyghebaert B. 2017, 406–410, DOI: 10.24326/fmpmsa.2017.73.
 
36.
Wolak A., Zając G., Kumbár V.: Evaluation of engine oil foaming tendency under urban driving conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2018, 20(2), 229–235, DOI: 10.17531/ein.2018.2.07.
 
37.
Zdziennicka A., Szymczyk K., Janczuk B., Longwic R., Sander P.: Surface, volumetric, and wetting properties of oleic, linoleic, and linolenic acids with regards to application of Canola Oil in Diesel Engines. Applied Sciences. 2019, 9(17), 3445, DOI: 10.3390/app9173445.
 
38.
Zöldy M., Török Á.: Road Transport Liquid Fuel Today and Tomorrow: Literature Overview. Periodica Polytechnica Transportation Engineering. 2015, 43, 172–176, DOI: 10.3311/PPtr.8095.
 
39.
Żebrowski R., Walczak M.: Effect of the shot peening on surface properties and tribological performance of Ti-6Al-4V alloy produced by means of DMLS technology. Archives of Metallurgy and Materials. 2019, 64(1), 377–386, DOI: 10.24425/amm.2019.126263.
 
eISSN:2084-476X