RESEARCH PAPER
The Environmental Safety of the Fiat 0.9 TwinAir Compressed Natural Gas Engine
 
More details
Hide details
1
Department of Automotive Vehicles and Transport, Kielce University of Technology, Polska
2
Department of Automotive Vehicles and Transport Engineering, Rzeszow University of Technology
CORRESPONDING AUTHOR
Michał Gerard Warianek   

Department of Automotive Vehicles and Transport, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Polska
Publication date: 2020-06-30
Submission date: 2020-04-01
Final revision date: 2020-06-06
Acceptance date: 2020-06-17
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2020;88(2):47–60
KEYWORDS
TOPICS
ABSTRACT
The article presents the results of measurements of concentrations of selected exhaust components of the Fiat 0.9 TwinAir spark-ignition engine operating according to load characteristics. The tested engine has an indirect, multi-point petrol supply system and has been retrofitted with an indirect CNG injection system. The results of the tests are a comparison of selected economic, ecological and energetic indicators of engine operation obtained when fuelled with CNG and 95 octane petrol. The operation of the engine fuelled with gaseous fuel was preceded by autocalibration of the controller of the fuelling system. The article presents the results of tests of concentrations of harmful components of exhaust gases: carbon dioxide CO2, carbon monoxide CO, nitrogen oxides NOx and HC hydrocarbons. Moreover, the values of lambda λ air excess coefficient are presented and fuel consumption is compared. The obtained results of the tests of the engine fuelled with CNG gas show a significant decrease in the value of the obtained torque in comparison to the engine torque when fuelled with petrol. The engine fuelled with compressed natural gas contributed to the improvement of its ecological properties and a reduction of fuel consumption, which are important factors of ecological and energy safety. Exhaust gas analysis showed a reduction in the concentration of harmful components of exhaust gases, mainly hydrocarbons and nitrogen oxides. A positive effect of the operation of the engine powered by CNG was also a significant reduction of carbon dioxide in the exhaust gases compared to the engine powered with gasoline.
 
REFERENCES (46)
1.
Ajanovic A., Haas R.: On the economics and the future prospects of battery electric vehicles. Greenhouse Gases-Science and Technology. 2020, DOI: 10.1002/ghg.1985.
 
2.
Ambrozik A., Ambrozik T., Kurczyński D., Łagowski P., Trzensik E.: Cylinder Pressure Patterns in the SI Engine Fuelled by Methane and by Methane and Hydrogen Blends. Solid State Phenomena. 2013, 210, 40–49, DOI: 10.4028/www.scientific.net/SSP.210.40.
 
3.
Anderhofstadt B., Spinler S.: Factors affecting the purchasing decision and operation of alternative fuel-powered heavy-duty trucks in Germany - A Delphi study. Transportation Research Part D - Transport and Environment. 2019, 73, 87–107, DOI: 10.1016/j.trd.2019.06.003.
 
4.
Behrad R., Aghdam EA., Ghaebi H.: Experimental study of knocking phenomenon in different gasoline-natural gas combinations with gasoline as the predominant fuel in a SI engine. Journal of Thermal Analysis and Calorimetry. 2020, 139, 2489–2497, DOI: 10.1007/s10973-019-08579-w.
 
5.
Bielaczyc P., Woodburn J.: Powertrain Development for Low-to-Zero Emissions and Efficient Energy Usage - the Industry Session held during the 5th PTNSS Congress on Combustion Engines. Combustion Engines. 2013, 4 (155), 75–79.
 
6.
Bieńczak M.,Gawron P., Kiciński M., Kwaśnikowski J.: Zrównoważone planowanie publicznego transportu zbiorowego w ramach jednostek terytorialnych - spójna metodyka oparta na metodach optymalizacji (Sustainable public transport planning within territorial units - a coherent methodology based on optimisation methods). Logistyka. 2015, 4, 90–98.
 
7.
Cantore G., Mattarelli E., Rinaldini CA., Savioli T., Scrignoli F.: Numerical Optimization of the Injection Strategy on a Light Duty Diesel Engine Operating in Dual Fuel (CNG/Diesel) Mode. International Journal of Heat and Technology. 2019, 37(3), 682–688, DOI: 10.18280/ijht.370303.
 
8.
Czakon W., Niemand T., Gast J., Kraus S., Fruhstuck L.: Designing coopetition for radical innovation: An experimental study of managers' preferences for developing self-driving electric cars. Technological Forecasting and Social Change. 2020, 155, DOI: 10.1016/j.techfore.2020.119992.
 
9.
Demusiak G., Dzirba J., Warowny W: Rola gazu ziemnego w technologiach ogniw paliwowych (The role of natural gas in fuel cell technology). Przemysł Chemiczny. 2005, 11, 22–28.
 
10.
Dobras S., Więcław-Solny L., Wilk A., Tatarczuk A.: Metan z procesów Power to Gas - ekologiczne paliwo do zasilania silników spalinowych (Methane from the Power to Gas process - an environmentally friendly fuel for internal combustion engines). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. 2018, 104, 97–106, DOI: 10.24425/124359.
 
11.
Hao X., Zhou Y., Wang HW., Ouyang MG.: Plug-in electric vehicles in China and the USA: a technology and market comparison. Mitigation and Adaptation Strategies for Global Change. 2020, DOI: 10.1007/s11027-019-09907-z.
 
12.
Khan MI., Yasmin T., Shakoor A.: Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable & Sustainable Energy Reviews. 2015, 51, 785–797, DOI: 10.1016/j.rser.2015.06.053.
 
13.
Kurczyński D., Łagowski P., Warianek M.: The impact of natural gas on the ecological safety of using Diesel engine. IEEE. 2018, 1–8, DOI: 10.1109/AUTOSAFE.2018.8373341.
 
14.
Lebelhuber C., Steinmuller H.: How and to which extent can the gas sector contribute to a climate-neutral European energy system? A qualitative approach. Energy Sustainability and Society. 2019, 9(23), DOI: 10.1186/s13705-019-0207-2.
 
15.
Lee J., Park C., Bae J., Kim Y., Lee S., Kim C.: Comparison between gasoline direct injection and compressed natural gas port fuel injection under maximum load condition. Energy. 2020, 197, 117173, DOI: 10.1016/j.energy.2020.117173.
 
16.
Luft S., Skrzek T.: Analysis of the effect of diesel oil injection timing on combustion parameters that affect durability of a dual-fuel combustion engine operating on natural gas. Material Science and Engineering. 2018, 421, 1–10, DOI: 10.1088/1757-899X/421/4/042051.
 
17.
Marinaro M., Bresser D., Beyer E., Faguy P., Hosoi K., Li H. et al.: Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources. 2020, 459, 228073, DOI: 10.1016/j.jpowsour.2020.228073.
 
18.
Merkisz J., Pielecha J., Łabędź K., Stojecki A.: Badania emisji spalin pojazdów o różnej klasie emisyjnej zasilanych gazem ziemnym (Emission tests for vehicles of different emission classes fuelled by natural gas). Prace Naukowe Politechniki Warszawskiej. Transport. 2013, 98, 463–472.
 
19.
Mohamed AAS., Shaier AA., Metwally H., Selem SI.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Applied Energy. 2020, 262, 114584, DOI: 10.1016/j.apenergy.2020.114584.
 
20.
Napolitano P., Alfe M., Guido C., Gargiulo V., Fraioli V., Beatrice C.: Particle emissions from a HD SI gas engine fueled with LPG and CNG. Fuel. 2020, 269, DOI: 10.1016/j.fuel.2020.117439.
 
21.
Olczyk M., Korzec J., Bielaczyc P., Sordyl A.: CNG and diesel fuel supply system in the CI engine as an alternative for traditional fuel systems. Combustion Engines. 2015, 162(3), 858–867.
 
22.
Pielecha J., Merkisz J., R. Stojecki A.: Ecological Analysis of Passenger Cars with Gasoline and Diesel Engines During the Road Emission. Logistyka. 2015, 4, 823–835.
 
23.
Racewicz, S, Olejnik A.: Control of Fiat MultiAir valve-lift system using ATMEGA microcontroller. Journal of KONES, Powertrain and Transport. 2017, 24 (3), 229–236, DOI: 10.5604/01.3001.0010.3083.
 
24.
Ran ZN., Hariharan D., Lawler B., Mamalis S.: Exploring the potential of ethanol, CNG, and syngas as fuels for lean spark-ignition combustion - An experimental study. Energy. 2020, 191, 116520, DOI: 10.1016/j.energy.2019.116520.
 
25.
Romaniszyn KM.: Alternatywne zasilanie samochodów benzyną oraz gazami LPG i CNG (Alternative car fuelling with petrol and LPG and CNG). Wydawnictwa Naukowo Techniczne. 2007.
 
26.
Rudkowski M., Dybaś K.: Zastosowanie gazów jako alternatywnych paliw silnikowych w transporcie samochodowym (Use of gases as alternative motor fuels for automotive transport). Forgaz. 2000, 1–15.
 
27.
Rudnik S.: Wybrane zagadnienia związane z transpozycją do polskiego porządku prawnego dyrektywy 2014/94/UE z dnia 22 października 2014 r. w sprawie rozwoju infrastruktury paliw alternatywnych (Selected issues related to the transposition into Polish law of Directive 2014/94/EU of 22 October 2014 on the development of alternative fuel infrastructure). Autobusy: Technika, Eksploatacja, Systemy Transportowe. 2018, 19(6), 948–951, DOI: 10.24136/atest.2018.207.
 
28.
Sendek-Matysiak E., Szumska E.: Infrastruktura ładowania jako jeden z elementów rozwoju elektromobilności w Polsce (Charging infrastructure as one of the elements of electromobility development in Poland). Prace Naukowe Politechniki Warszawskiej. Transport. 2018, 121, 329–340.
 
29.
Sendek-Matysiak E.: Ocena cyklu życia samochodów elektrycznych typu BEV w kontekście zrównoważonego rozwoju (Life Cycle Assessment of BEVs in the context of sustainable development). Prace Naukowe Politechniki Warszawskiej. Transport. 2018, 123, 147–160.
 
30.
Singh AP., Pal A., Agarwal AK.: Comparative particulate characteristics of hydrogen, CNG, HCNG, gasoline and diesel fueled engines. Fuel. 2016, 185, 491–499, DOI: 10.1016/j.fuel.2016.08.018.
 
31.
Skrobacki Z.: Od ogólnej idei zrównoważonego rozwoju do zasad zrównoważonego rozwoju transportu (From the general idea of sustainable development to the principles of sustainable transport). Autobusy, Technika, Eksploatacja, Systemy Transportowe. 2011, 12, 297–307.
 
32.
Stelmasiak Z, Larisch J., Pietras D.: The effect of natural gas addition on selected operating parameters Fiat 1.3 MultiJet engine powered dual-fuel. Combustion Engines. 2015, 162(3), 672–682.
 
33.
Stelmasiak Z., Larisch J.: Badania porównawcze hałaśliwości pracy dwupaliwowego silnika Fiat 1,3 MultiJet zasilanego CNG (Comparative tests of operating noise of a Fiat 1.3 CNG - powered multijet dual fuel engine). Logistyka. 2014, 6, 10024–10032.
 
34.
Stelmasiak Z., Larisch J., Pietras D.: Issues related to naturally aspirated and supercharged CI engines fueled with diesel oil and CNG gas. Combustion Engines. 2017, 169(2), 24–31, DOI: 10.19206/CE-2017-205.
 
35.
Stelmasiak Z.: Wybrane problemy stosowania gazu ziemnego do zasilania silników o zapłonie samoczynnym (Selected problem of using natural gas to run compression - ignition engines). Archiwum Motoryzacji. 2006, 1, 12–30.
 
36.
Szumska E., Jurecki R., Pawełczyk M: Evaluation of the use of hybrid electric powertrain system in urban traffic conditions. Maintenance and Reliability. 2020, 22(1), 154–160, DOI: 10.17531/jein.2020.1.18.
 
37.
Szumska E., Sendek-Matysiak E., Pawełczyk M.: Porównanie kosztów cyklu życi aautobusów miejskich z napędami konwencjonalnymi i alternatywnymi (Comparison of life cycle costs of city buses with conventional and alternative drives). Prace Naukowe Politechniki Warszawskiej. Transport. 2018, 120, 395–404.
 
38.
Usman M., Hayat N.: Use of CNG and Hi-octane gasoline in SI engine: a comparative study of performance, emission, and lubrication oil deterioration. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019, DOI: 10.1080/15567036.2019.1683098.
 
39.
Ustawa o elektromobilności i paliwach alternatywnych (Act on electromobility and alternative fuels). Dz. U. 2018 poz. 317, http://prawo.sejm.gov.pl/isap.... (accessed 17 03 2020).
 
40.
Uzdowski M.: Właściwości gazu ziemnego jako paliwa do zasilania tłokowych silników spalinowych (Properties of natural gas as a fuel for internal combustion piston engines). Autobusy, Eksploatacja, Systemy Transportowe. 2012, 5, 462–467.
 
41.
Warowny W., Rychlicki S.: Wybrane nowe technologie w transporcie i zastosowaniach energetycznych gazu ziemnego (Selected new technologies in natural gas transport and energy applications). Wiertnictwo, Nafta, Gaz. 2007, 24(2), 901–914.
 
42.
Warowny W., Tkacz A.: Gaz ziemny i jego charakterystyka jako paliwa do pojazdów kołowych (Natural gas and its characteristics as a fuel for road vehicles). Gaz, Woda i Technika Sanitarna. 2001, 8, 267–272.
 
43.
Xu Y., Zhang Y., Gong J., Su S., Wei Z.: Combustion behaviours and emission characteristics of a retrofitted NG/gasoline duel-fuel SI engine with various proportions of NG-gasoline blends. Fuel. 2020, 266, 116957, DOI: 10.1016/j.fuel.2019.116957.
 
44.
Yontar AA., Doğu Y.: Effects of equivalence ratio and CNG addition on engine performance and emissions in a dual sequential ignition engine. International Journal of Engine Research. 2019, DOI: 10.1177/1468087419834190.
 
45.
Yuvenda D., Sudarmanta B., Wahjudi A., Muraza O.: Improved combustion performances and lowered emissions of CNG-diesel dual fuel engine under low load by optimizing CNG injection parameters. Fuel. 2020, 269, 117202, DOI: 10.1016/j.fuel.2020.117202.
 
46.
Zhao X., Zhao XM., Yu Q., Ye YM., Yu M.: Development of a representative urban driving cycle construction methodology for electricvehicles: A case study in Xi'an. Transportation Research Part D-Transport and Environment. 2020, 81, UNSP102279, DOI: 10.1016/j.trd.2020.102279.
 
eISSN:2084-476X