RESEARCH PAPER
The Influence of the Conditions of Use and the Type of Model Used on the Vertical Dynamic Responses of a Car Suspension
Zbyszko Klockiewicz 1  
,  
Grzegorz Ślaski 1  
,  
 
 
More details
Hide details
1
Wydział Inżynierii Transportu, Politechnika Poznańska, Polska
CORRESPONDING AUTHOR
Zbyszko Klockiewicz   

Wydział Inżynierii Transportu, Politechnika Poznańska, Poznań, Polska
Publish date: 2019-09-30
Submission date: 2019-08-22
Final revision date: 2019-09-18
Acceptance date: 2019-09-20
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;85(3):57–82
KEYWORDS
TOPICS
ABSTRACT
The article presents a study of the influence of vehicle’s conditions of use, such as road class, vehicle speed or its load, on its vertical dynamic responses. In the article only the kinematic excitations were analysed, as these are more common than the dynamic ones. The road profiles were artificially generated according to the ISO 8608 standard, which classifies roads based on power spectral density of excitations which they generate. Ride safety, ride comfort and fatigue strength indicators were computed. Ride safety was defined by the DLC – Dynamic Load Coefficient. Ride comfort was judged taking into consideration the recommendations from the ISO 2631 standard (which contains the information on vibration frequencies and their effect on human body, as well as the allowed exposure times to given vibrations) by calculating root mean square values of sprung mass accelerations for bandwidths defined in the standard. Load spectrums for the fatigue analysis were created using forces generated in a simulation as a basis and further research venues were proposed. Lastly conclusions were drawn from the results, that imply that linear models are sufficient for many standard applications on roads of acceptable quality, however the use of non-linear models is recommended in fatigue strength analysis regardless of conditions of use.
 
REFERENCES (30)
1.
Aghilone G.: Analysis of methods proposed by International Standard ISO 2631 for evaluating the human exposure to whole-body vibration. Progress in Vibration and Acoustics, 2016, 4(4), 1–13, DOI: 10.12866/J.PIVAA.2016.19.
 
2.
Bekker H.: 2018 (Full Year) Europe: Best-Selling Car Models. 2019. [Online]. Available: https://www.best-selling-cars..... [Accessed: 04-Jul-2019].
 
3.
Bogsjö K., Podgórski K., Rychlik I.: Models for road surface roughness. Vehicle System Dynamics. 2012, 50(5), 725–747, DOI: 10.1080/00423114.2011.637566.
 
4.
Celko J., Decky M., Kovac M.: An analysis of vehicle – road surface interaction for classification of IRI in the frame of Slovak PMS. Maintenance and reliability, Polish Maintenance society, 2009, 1(41), 15-21.
 
5.
Doumiati M., Victorino A., Charara A., Lechner D.: Estimation of road profile for vehicle dynamics motion: Experimental validation. Proceedings of the American Control Conference. 2011, 5237–5242, DOI: 10.1109/ACC.2011.5991595.
 
6.
Dukkipati R.V., Pang J., Qatu M.S., Sheng G., Shuguang Z.: Road Vehicle Dynamic. SAE International. 2008.
 
7.
Hejman M., Lukes V.: Generation of virtual track profiles using experiments and computer simulations. Journal of Theoretical and Applied Mechanics. 2008, 46(2), 435–442.
 
8.
Heuler P., Klätschke H.: Generation and use of standardised load spectra and load-time histories. International Journal of Fatigue. 2005, 27(8), 974–990, DOI:10.1016/j.ijfatigue.2004.09.012.
 
9.
ISO-2631: Mechanical vibration and shock evaluation of human exposure to whole-body vibration. 1997.
 
10.
Jazar R.N.: Vehicle Dynamics. Theory and Application, Springer, 2008.
 
11.
Johannesson P. Rychlik I.: Laplace processes for describing road profiles. Procedia Engineering. 2013, 66, 464–473, DOI: 10.1016/j.proeng.2013.12.099.
 
12.
Johannesson P. Rychlik I.: Modelling of road profiles using roughness indicators. International Journal of Vehicle Design. 2014, 66(4), 317-346, DOI: 10.1504/IJVD.2014.066068.
 
13.
Kamiński E., Pokorski J.: Teoria samochodu. Dynamika zawieszeń i układów napędowych pojazdów samochodowych. WKŁ, Warszawa 1983.
 
14.
Kropáč O. Múčka P.: Be careful when using the International Roughness Index as an indicator of road unevenness. Journal of Sound and Vibration. 2005, 287(4–5), 989–1003, DOI: 10.1016/j.jsv.2005.02.015.
 
15.
Lozia Z.: Wybrane zagadnienia symulacji cyfrowej procesu hamowania samochodu dwuosiowego na nierównej nawierzchni drogi. Politechnika Warszawska, 1985.
 
16.
Maher D., Young P.: An insight into linear quarter car model accuracy. Vehicle System Dynamics. 2011, 49(3), 463–480, DOI: 10.1080/00423111003631946.
 
17.
Mattetti M., Molari G., Sedoni E.: Methodology for the realisation of accelerated structural tests on tractors. Biosystems Engineering. 2012, 113(3), 266–271, DOI: 10.1016/j.biosystemseng.2012.08.008.
 
18.
McGetrick P.J., Kim C.W., Gonzalez A., Obrien E.J.: Dynamic Axle Force and Road Profile Identification Using a Moving Vehicle. International Journal of Architecture, Engineering and Construction. 2013, 2(1), 1–16, DOI: 10.7492/IJAEC.2013.001.
 
19.
Mitschke M.: Dynamika samochodu t.2 Drgania. WKiŁ. Warszawa 1989.
 
20.
Mitura A.: Modelowanie drgań nieliniowego zawieszenia pojazdu samochodowego z tłumieniem magnetoreologicznym: rozprawa doktorska. Politechnika Lubelska, Lublin 2010.
 
21.
Múčka P.: Simulated Road Profiles According to ISO 8608 in Vibration Analysis. Journal of Testing and Evaluation. 2017, 46(1) 20160265, DOI: 10.1520/JTE20160265.
 
22.
Múčka P.: Road waviness and the dynamic tyre force. International Journal of Vehicle Design. 2005, 36(2/3), 216-232, DOI: 10.1504/IJVD.2004.005357.
 
23.
OBrien E.J., McGetrick P.J., González A.: Identification of Road Irregularities via Vehicle Accelerations. Transport Research Arena (TRA 2010), Brussels, Belgium. 2010, 7–10.
 
24.
Pikosz H. Ślaski G.: Charakterystyki elementów sprężystych i tłumiących zawieszenia samochodu oosobwego oraz zastępcze charakterystyki ich modeli. Logistyka. 2010, 2.
 
25.
Rotenberg R.W.: Zawieszenie samochodu. Wydawnictwo Komunikacji i Łączności. 1974.
 
26.
Savaresi S.M., Poussot-Vassal C., Spelta C., Sename O., Dugard L.: Semi-Active Suspension Control Design for Vehicles. 2010.
 
27.
Ślaski G.: Studium projektowania zawieszeń samochodowych o zmiennym tłumieniu. Wydawnictwo Politechniki Poznańskiej, Poznań 2012.
 
28.
Sunder R.: Spectrum load fatigue - Underlying mechanisms and their significance in testing and analysis. International Journal of Fatigue. 2003, 25(9–11), 971–981, DOI: 10.1016/S0142-1123(03)00136-1.
 
29.
Genta G., Morello L.: The Automotive Chassis. System Design. Springer, New York 2009.
 
30.
Zdanowicz P., Lozia Z.: Wyznaczenie optymalnej wartości współczynnika asymetrii amortyzatora pasywnego zawieszenia samochodu z wykorzystaniem modelu „ćwiartki samochodu. Prace. Naukowe. Politechniki. Warszawskiej - Transport. 2017, 119, 249–265.
 
eISSN:2084-476X