RESEARCH PAPER
Analysis of braking marks left by vehicles equipped with ABS with IR spectroscopy
Łukasz Gosławski 1  
,  
Przemyslaw Kubiak 1  
,  
Adam Mrowicki 1  
,  
Ewa Sys 1  
,  
Ying-Wei Wang 2  
,  
Tiefang Zou 3  
 
 
More details
Hide details
1
Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Polska
2
Graduate School of Service Management, National Penghu University, Taiwan
3
School of Automobile and Mechanical Engineering, Changsha University of Science and Technology, China
CORRESPONDING AUTHOR
Przemyslaw Kubiak   

Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 1/15 Stefanowskiego Str.,, 90-924, Lodz, Polska
Publish date: 2019-06-28
Submission date: 2019-03-17
Final revision date: 2019-05-26
Acceptance date: 2019-06-18
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;84(2):33–43
KEYWORDS
TOPICS
ABSTRACT
This paper presents the possible use for IR spectroscopy to reveal skid marks left by cars equipped with Anti-lock Braking System. Detailed analysis of literature showed that there is no method that can be used in order to investigate this kind of tire marks. Up till now only two techniques have been devised. The first one is Method of Image Refinement which consists of transforming the image from the scene of the accident using dedicated graphics software. Second method includes analysis of traces using a thermal imaging camera. This study presents an innovative approach to the problem. Numerous analyses using IR spectroscopy were conducted to check the suitability of this method. The research performed on a Thermo Scientific FTIR Nicolet iS50 Spectrophotometer with an ATR attachment. 40 samples from 10 different types of asphalt were prepared. Each sample was measured 3 times to create its spectrum. The results were analyzed thoroughly using the dedicated SpectraGryph software. Analysis show that the wavelength which makes the braking marks visible is found within the mid-infrared range. Finally, it was found wavelength in which skid marks should be visible. This range is located in the mid-infrared.
 
REFERENCES (21)
1.
Batterman SD, Batterman SC. Introduction to Forensic Engineering and Accident Reconstruction. The Forensic Laboratory Handbook Procedures and Practice. Humana Press, 2011. 539-561. DOI: 10.1007/978-1-60761-872-0_20.
 
2.
Beauchamp G, Hessel D, Rose NA, Fenton SJ, Voitel, T. Determining vehicle steering and braking from Yaw Mark Striations. SAE International Journal of Passenger Cars-Mechanical Systems, 2(2009-01-0092), 2009, 291-307. DOI: 10.4271/2009-01-0092.
 
3.
Brady DJ. Optical Imaging and Spectroscopy. John Wiley & Sons, 2009. DOI: 10.1002/9780470443736.
 
4.
Clark WE. Traffic management and collision investigation. Prentice-Hall, 1982. DOI: 10.1016/0001-4575(82)90063-X.
 
5.
Daily J, Shigemura NS, Daily J. Fundamentals of Traffic Crash Reconstruction (Vol. 2). Institute of Police Technology & Management, 2006.
 
6.
Engels K. Das Notbremsvermögen von Pkw mit Automatischen Blockierverhinderern (ABV) unterschiedlicher Bauart-ein Leistungsvergleich zwischen ABS, ALB und ASBS. Verkehrsunfall Fahrzeugtech, 22.7/8, 1984.
 
7.
Engels K. Moeglichkeiten und grenzen der geschwindigkeitsrueckrechnung aus regelspuren ABV-gebremster pkw. Verkehrsunfall, 21.5, 1983.
 
8.
Gao, H. and Tian, Z.Z., 2010. Determination of Crash Surrogates Using Tire Skid Marks. Proceedings of the Conference on Traffic and Transportation Studies, ICTTS, 383, 1457-1468, 2010. DOI: 10.1061/41123(383)141.
 
9.
Grosch KA. Rubber abrasion and tire wear. Rubber Chemistry and Technology, 81(3), 470-505, 2008. DOI: 10.5254/1.3548216.
 
10.
Kolator B, Olszewski A, Walczak S, Wolak S. Evaluation attempt of tire thermal skid mark developed during braking of wheeled vehicle. Studies & Proceedings Polish Association for Knowledge Management, 69, 91-100, 2014.
 
11.
Lambourn RF. Braking and cornering effects with and without anti-lock brakes. SAE Technical Paper No. 940723, 1994. DOI: 10.4271/940723.
 
12.
Metz LD, Ruhl RL. Skidmark Signatures of ABS-Equipped Passenger Cars. SAE Technical Paper No. 900106, 1990. DOI: 10.4271/900106.
 
13.
Morris A, Smith M, Chambers D, Thomas P. Integrated protocols for accident research on the scene (OTS). Loughborough University, 1999.
 
14.
Nešić M, Lipovac K. Analysis of traffic safety of vehicles equipped with ABS. In European Automobile Engineers Cooperation-10th EAEC European Automotive Congress. 1, 294-306, 2005.
 
15.
Oppenheimer P. Comparing Stopping Capabiity of Cars with and without Antilock Braking Systems (ABS). SAE Transactions, 313-336, 1988. DOI: 10.4271/880324.
 
16.
Prochowski L, Unarski J, Wach W, Wicher J. Podstawy rekonstrukcji wypadków drogowych. Wydawnictwa Komunikacji i Łączności, 276-277, 2008.
 
17.
Seipel G, Baumann F, Hermanutz R, Winner H. Analysis of the influence of vehicle dynamic parameters on tire marks. Tire Science And Technology, 41(3), 196-213. 2013. DOI: 10.2346/tire.13.410302.
 
18.
Seipel G, Winner H, Baumann F, Hermanutz R. Approach to determine slip values based on the intensity of tire marks with respect to tire and road properties. SAE Technical Paper No. 2013-01-0781, 2013. DOI: 10.4271/2013-01-0781.
 
19.
Theophanides T. Introduction to Infrared Spectroscopy, Infrared Spectroscopy – Materials Science, Engineering and Technology. IntechOpen, 2012. DOI: 10.5772/49106.
 
20.
Wierciński J. Wypadki drogowe – elementy analizy technicznej i opiniowania, Wydawnictwa Komunikacji i Łączności, Warszawa, 1985.
 
21.
Žuraulis V, Levulytė L, Sokolovskij E. Vehicle speed prediction from yaw marks using photogrammetry of image of traffic accident scene. Procedia engineering, 134, 89-94, 2016. DOI: 10.1016/j.proeng.2016.01.043.
 
eISSN:2084-476X