PL EN
RESEARCH PAPER
Application of modelling and simulation to evaluate the theta method used in diagnostics of automotive shock absorbers
 
More details
Hide details
1
EiUP, Politechnika Warszawska, Wydział Transportu / Warsaw University of Technology, Faculty of Transport, Polska
 
 
Submission date: 2022-03-24
 
 
Final revision date: 2022-05-10
 
 
Acceptance date: 2022-06-08
 
 
Publication date: 2022-06-30
 
 
Corresponding author
Zbigniew Aleksander Lozia   

EiUP, Politechnika Warszawska, Wydział Transportu / Warsaw University of Technology, Faculty of Transport, Koszykowa Street 75, 00-662, Warsaw, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2022;96(2):5-30
 
KEYWORDS
TOPICS
ABSTRACT
The dynamic properties of the car's suspension largely depend on the damping that results from the state of the shock absorbers. Their technical condition is essential for vehicle occupants’ comfort and traffic safety. It changes with the time and intensity of use of the vehicle. Therefore, adequate methods of non-destructive (diagnostic) testing of suspension damping have been sought for many years. The on-vehicle tests are particularly useful thanks to their low cost and short test duration time. The newest method is the ‘theta’ method which is the subject of the presented article. Notation ‘theta’ usually means relative damping (damping ratio) in the vibrating system. The paper asses four variants of the method. Two versions come from modal analysis and are also known as the ‘peak-picking method’ or ‘half-power method’. Two other versions are described in cited patent documentations. Three linear ‘quarter car' models with their description in the frequency domain were used to assess mentioned variants of the ‘theta’ method. Calculations were made for two typical datasets corresponding to the front and rear suspension system of a medium-class motor car. This provided grounds for general qualitative and (within a limited scope) quantitative assessment of the usefulness of individual variants of the method under analysis and for comparisons between them. The paper is to help in choosing the variant of the ‘theta’ method that would most likely find the application and that might be recommended to manufacturers and would-be purchasers of diagnostic suspension testers. The author has also highlighted the importance of possible further research.
 
REFERENCES (25)
1.
Arczyński St.: Mechanika ruchu samochodu (Mechanics of motion of a motor vehicle), WNT, Warszawa, 1993.
 
2.
Buekenhoudt P. (GOCA): Minimum phase shift. CITA 2011 Conference and 15th General Assembly, 2011, 4-6 May, Berlin, Germany.
 
3.
Buzzi C. (inventor): System for measuring the damping coefficient of vehicle-mounted shock absorbers. Appl. No EP0647843A2. European Patent Office: 12.04.1995. Bulletin 95/15.
 
4.
Calvo J.A., Diaz V., San Román J.L.: Establishing inspection criteria to verify the dynamic behaviour of the vehicle suspension system by a platform vibrating test bench. International Journal of Vehicle Design. 2005, 38(4), 290–306, DOI: 10.1504/IJVD.2005.007623.
 
5.
Calvo J.A., San Román J.L., Alvarez-Caldas C.: Procedure to verify the suspension system on periodical motor vehicle inspection. International Journal of Vehicle Design. 2013, 63(1), 1–17, DOI: 10.1504/IJVD.2013.055497.
 
6.
Dixon J.C.: The shock absorber handbook, 2nd edition, SAE International, John Wiley & Sons Ltd. ISBN 978-0-7680-1843-1. November 2007.
 
7.
Dukkipati R.V., Pang J., Qatu M.S., Sheng G., Shuguang Z.: Road vehicle dynamics. SAE International, Warrendale, Pa, 2008, ISBN 978-0-7680-1643-7.
 
8.
Gardulski J.: Metody badań amortyzatorów samochodów osobowych (Testing methods for vehicle shock absorbers). Diagnostyka. 2009, 3(51), 93–100.
 
9.
He J., Fu Z.: Modal analysis. Butterworth-Heinemann, 2001, DOI: 10.1016/B978-0-7506-5079-3.X5000-1.
 
10.
Kamiński E., Pokorski J.: Teoria samochodu. Dynamika zawieszeń i układów napędowych pojazdów samochodowych (Automobile theory. Dynamics of suspension systems and powertrains of motor vehicles”). WKŁ, Warszawa, 1983.
 
11.
Klapka M., Mazůrek I., Macháček O., Kubìk M.: Twilight of the EUSAMA diagnostic methodology. Meccanica., 2016, 52(9), 2023–2034, DOI: 10.1007/s11012-016-0566-0.
 
12.
Klapka M., Mazůrek I., Kubìk M., Macháček O.: Reinvention of the EUSAMA diagnostic methodology. International Journal of Vehicle Design. 2017, 74(4), 304–318, DOI: 10.1504/IJVD.2017.087968.
 
13.
Knestel A., Küchle J. (inventors): Procedure and device for determining a measure of the vibration absorption of vehicles, European Patent EP1564538B1, European Patent Office, Bulletin 2010/23. Current Assignee: MAHA GmbH&Co.
 
14.
Konieczny Ł.: Wykorzystanie metod drganiowych w ocenie stanu technicznego mechanicznych i hydropneumatycznych zawieszeń pojazdów samochodowych (Application of vibratory methods for assessment of technical condition of mechanical and hydropneumatic automotive suspension systems), Wydawnictwo Politechniki Śląskiej, Gliwice, 2015.
 
15.
Lozia Z.: The use of a linear quarter-car model to optimize the damping in a passive automotive suspension system – a follow-on from many authors’ works of the recent 40 years, The Archives of Automotive Engineering - Archiwum Motoryzacji. 2016, 71(1), 33–65, DOI: 10.14669/AM.VOL71.ART3.
 
16.
Lozia Z., Pirsztuk J.: Ocena wpływu sprzężeń w zawieszeniu samochodu na wyniki testu stanu amortyzatorów metodą EUSAMA (Assessment of the impact of couplings in the motor vehicle suspension system on EUSAMA shock absorber test results), Teka Komisji Naukowo-Problemowej Motoryzacji, PAN Oddział w Krakowie (Files of the Scientific and Problem Committee of the Automotive Industry, Polish Academy of Sciences, Division in Cracow, Kraków, 2001, 22, 273–280.
 
17.
Lozia Z., Zdanowicz P.: Simulation assessment of the impact of inertia of the vibration plate of a diagnostic suspension tester on results of the EUSAMA test of shock absorbers mounted in a vehicle. IOP Conference Series: Materials Science and Engineering. 2018, 421(2), 022018, DOI: 10.1088/1757-899X/421/2/022018.
 
18.
Mazůrek I., Klapka M. (inventors): Method of measuring damping ratio of unsprung mass of half axles of passenger cars using a suspension testing rig without disassembling, Appl. No. EP3193152A1, European Patent Office: 19.07.2017. Bulletin 2017/29.
 
19.
Pérez-Peña A., García-Granada A.A., Menacho J., Molins J.J., Reyes G.: A methodology for damping measurement of engineering materials: Application to a structure under bending and torsion loading. Journal of Vibration and Control. 2016, 22(10), 2471–2481, DOI: 10.1177/1077546314547728.
 
20.
Stańczyk T. L.: Analysis of the possibilities of using the phase angle as a diagnostic parameter in shock absorber examinations. Archives of Transport. 2004, 16(2), 33–50.
 
21.
Stańczyk T. L., Jurecki R.: Analiza porównawcza metod badania amortyzatorów hydraulicznych (Comparative analysis of testing methods of hydraulic shock absorbers). Proceedings of the Institute of Vehicles, Warsaw University of Technology, 2014, 4(100), 25–45.
 
22.
Tsymberov A. (inventor): Suspension tester and method, United States Patent No. 5,369,974. Date of Patent: Dec. 6, 1994.
 
23.
Tsymberov A.: An improved non-intrusive automotive suspension testing apparatus with means to determine the condition of the dampers. SAE Technical Paper. 1996, 105, 970–983, DOI: 10.4271/960735.
 
24.
Wang X., Kun L., Liu H., He Y.: Damping identification with acceleration measurements based on sensitivity enhancement method. Shock and Vibration. 2018, 1, 1–16, DOI: 10.1155/2018/6476783.
 
25.
Zdanowicz P.: Ocena stanu amortyzatorów pojazdu z uwzględnieniem tarcia suchego w zawieszeniu (Assessment of the condition of vehicle’s shock absorbers with considering the dry friction in the suspension system), doctoral dissertation, Warsaw University of Technology, Faculty of Transport, Warszawa, 2012.
 
Declaration of availability
 
eISSN:2084-476X
Journals System - logo
Scroll to top