RESEARCH PAPER
REPRESENTATION OF COMPLEX OBJECT AND PROCESS STRUCTURES IN GRAPH DATA BASE ON THE EXAMPLE OF AGRICULTURAL TRACTOR
 
More details
Hide details
1
Transport and Computer Science, University of Economics and Innovation in Lublin, Polska
CORRESPONDING AUTHOR
Robert Paweł Pietrzyk   

Transport and Computer Science, University of Economics and Innovation in Lublin, Projektowa 4, 20-209, Lublin, Polska
Publish date: 2019-03-29
Submission date: 2019-01-27
Final revision date: 2019-03-06
Acceptance date: 2019-03-07
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;83(1):5–22
KEYWORDS
TOPICS
ABSTRACT
There is presented application of Graph Data Base technology in knowledge engineering task concerned with knowledge representation of complex structures. The first example is graph representation of composition of tractor gearbox. It is an example of application of static partonomy relation. Adequate codding of that relation in Graph Data Base is easily expressed in Cypher language. There were presented some applications of Graph Data Base useful in management of technical object existence in different “life” phases, as design, production, maintenance and recycling. The second example concerns the Graph representation of activity structure. Such structures was built based on agricultural tractor’s technical revisions system. Created Data Base allows for processing the queries referred to the questions of what activities in what period should be performed to maintain the agricultural tractor ready to work in good technical condition. The Graph Data Base technology is the first step to create semantic systems for data storing and processing in order to extract knowledge and information useful in precise physical process management.
 
REFERENCES (26)
1.
Chartrand G., Zhang Q. First Course in Graph Theory, Dover Publications (February 15, 2012), ISBN-10: 0486483681, DOI: 10.1007/978-93-86279-39-2.
 
2.
Chunliu Z., Xiaobing L., Fanghong X., Hongguang B., Kai L. Research on static service BOM transformation for complex products. Advanced Engineering Informatics 36, 2018, 146-162, DOI: https://doi.org /10.1016/j.aei.2018.02.008.
 
3.
Chłopek Z., Debski B., Szczepański K. Theory and practice of inventory pollutant emission from civilization-related sources. Share of the emission harmful to health from Road Transport, The Archives of Automotive Engineering – Archiwum Motoryzacji, 2018, 79, 1, 5-22, DOI: http://dx.doi. org/10.14669/AM.VOL.79.ART1.
 
4.
Gajek A. Directions for development of periodic technical inspection for motor vehicles safety systems, The Archives of Automotive Engineering – Archiwum Motoryzacji, 2018, 80, 2, 37-51, DOI: http://dx.doi. org/10.14669/AM.VOL80.ART3.
 
5.
Gupta S. Neo4j Essentials, Leverage the power of Neo4j is a design, Implement, and Deliver top-notch projects, 2015 Packt Publishing Ltd., ISBN 978-1-78355-517-8.
 
6.
Harrison G., Next generation databases - NoSQL, NewSQL, and Big Data, Apress 2015, ISBN-13 (electronic): 978-1-4842-1329-2.
 
7.
Ji Guoli, Gong Daxin, Freddie Tsui, Analysis and implementation of the BOM of a tree-type structure in MRPII, Journal of Materials Processing Technology, Volume 139, Issues 1–3, 2003, Pages 535-538, DOI: https://doi.org/10.1016/S0924-...,.
 
8.
Lotko A. Measuring the behavioural loyalty of garage customers, The Archives of Automotive Engineering – Archiwum Motoryzacji, 2018, 79, 1, 37-52, DOI: http://dx.doi. org/10.14669/AM.VOL79.ART3.
 
9.
Munira Mohd Ali, Rahul Rai, J. Neil Otte, Barry Smith. A product life cycle ontology for additive manufacturing. Computers in Industry, 105, 2019, 191-203, DOI: https://doi.org /10.1016/j.compind.2018.12.007.
 
10.
Rawia Ahmed Hassan E.L. Rashidy, Peter Hughes, Miguel Figueres-Esteban, Chris Harrison, Coen Van Gulijk. A big data modeling approach with graph databases for SPAD risk, Safety Science, 110, Part B, 2018, 75-79, DOI: https://doi.org/10.1016/j.ssci....
 
11.
Robinson I., Webber J.Eifrem E. Graph databases, 2015 Neo Technology, Inc. O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 978-1-491-93200-1.
 
12.
Sasaki B., M., Chao J., Howard R. Graph databases For Beginners, Neo4j EBook. The #1 Platform for connected Date, https://neo4j.com/ (access data June, 11th, 2018).
 
13.
Sowa J. F. Knowledge Representation: Logical, Philosophical, and Computational Foundations John F. Sowa Pacific Grove, CA: Brooks/Cole, 2000, xiv+594 pp; hardbound, DOI: 10.1162/089120101750300544.
 
14.
Sowa, J. F. Conceptual graphs as a universal knowledge representation, Computers & Mathematics with Applications, Volume 23, Issues 2–5, 1992, Pages 75-93, DOI: https://doi.org /10.1016/0898-1221(92)90137-7.
 
15.
Surblys V. Ślaski G. Pikosz H. The usage of a laser height sensors for estimating road unevenness profile, The Archives of Automotive Engineering – Archiwum Motoryzacji, 2018, 79, 1, 5-106, DOI: http://dx.doi. org/10.14669/AM.VOL79.ART7.
 
16.
Trudeau, R. J. Introduction to Graph Theory, Dover Books on mathematics, Dover Publications; 2nd Edition (February 9, 1994), ISBN-10: 0486678709.
 
17.
Van Bruggen R. Learning Neo4j, 2014 Packt Publishing LTD.
 
18.
Van Steen, M.Graph. Theory and Complex Networks; An Introduction, Maarten van Steen (April 5, 2010), ISBN-10: 9081540610.
 
19.
Agricultural Wheel tractor-URSUS MF-255 with cab -Repair Manual, mechanical plants URSUS, ul. Traktorzystów 1, 02-495 Warszawa, publishing house of Mechanical engineering WEMA, Warszawa, 1989.
 
20.
Spare Parts Catalogue Tractors Ursus 3512, 3514, plants of tractor industry Ursus, number of publications 70143014M, Warszawa 1995.
 
21.
Neo4j Graph Academy, https://neo4j.com/graphacademy... (access data November, 25th, 2018).
 
22.
Neo4j Download, https://neo4j.com/download/ (access data February, 24th, 2019).
 
23.
Neo4J Intro to Cypher, https://neo4j.com/developer/cy... (access data November, 25th, 2018).
 
24.
Neo4J Cypher Refcard 3.4, https://neo4j.com/docs/pdf/neo... (access data November, 25th, 2018).
 
25.
The Neo4j Developer Manual v3.4, https://neo4j.com/docs/develop... (access data February, 24th, 2019).
 
26.
The Neo4j Operations Manual v3.4, https://neo4j.com/docs/operati... (access data November, 25th, 2018).
 
eISSN:2084-476X