A method for the estimation of sideslip angle for a vehicle equipped with a one-antenna GPS measuring system
Wiesław Pieniążek 1  
,   Stanisław Wolak 2  
,   Robert Janczur 3  
More details
Hide details
Institute of Automobiles and Internal Combustion Engines, Cracow University of Technology -pensioner
Szkolenia uzytkowników programów do rekonstrukcji wypadków, CYBID Kraków
Institute of Automobile and Internal Combustion Engines, Cracow University of Technilogy
Wiesław Pieniążek   

Institute of Automobiles and Internal Combustion Engines, Cracow University of Technology -pensioner
Submission date: 2019-05-11
Final revision date: 2019-06-24
Acceptance date: 2019-06-24
Publication date: 2019-06-28
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;84(2):137–146
One-antenna GPS systems present no possibility for the direct determination of vehicle slip angle. This is an easy task for dual antenna systems; however, many users have this kind of apparatus. In this paper, a method of estimation of this parameter, which is important for the estimation of vehicle steerability factors, is proposed (e.g. TB factor calculated on the basis of data from input test [8]). The method is based on two parameters measured by a one-antenna GPS system; these are the heading angle created from the Doppler channel coming directly from the GPS engine, and the yaw rate measured by an IMU device integrated and cooperating with the GPS engine. The sideslip angle which was calculated according to the proposed method is compared with an equivalent angle calculated on the basis of data from a non-slip measurement of velocity components for selected point of vehicle acquired using. The presented method is illustrated with examples from real tests. In the author’s opinion, the sideslip angle calculated with the application of measurement data obtained from a one-antenna GPS device could be used in practice. From comparison with another upper mentioned method, it follows that the differences between average values of sideslip angles obtained from both considered methods is not greater than 8%.
Braasch, M. S., van Dierendonck, A. J.: GPS Receiver Architectures and Measurements, Proceedings of the IEEE, 1999, (87/ 1).
Chindamo D., Lenzo B., Gadola M.: On the Vehicle Sideslip Angle Estimation. A Literature Review of Methods, Models and Innvations, Applied Sciences, 2018, 8(3), 355; (access: 22-th, June 2019).
Embendded Navigation Solution. VN-300. User Manual. Document Revision 2.43, VectorNav, 2005, 17-18.
Enge, P. K.: The Global Positioning System: Signals, Measurements and Performance, International Journal of Wireless Information Networks, 1994, (1/2).
Fronczak P.: Metody numeryczne. Wykład 6 – Różniczkowanie, Wydział Fizyki Politechniki Warszawskiej (Numerical Methods. Lecture 6-th. Differentiating), (access: 22-th, June 2019).
ГОСТ Р 52302: 2005 Автотранспортные средства. Управляемость и Устойчивость. Технические Требования Изательство Стандатов, Москва, 2005 (Automobile Transport. Road Holding Ability and Stability. Technical Requirements).
Greń J.: Statystyka Matematyczna. Modele i zadania (Mathematical Statistics. Models and Problems) PWN, Warszawa, 1984.
ISO 8555: 1991(E): Road Vehicles – Vehicle Dynamics and Road-Holding Ability Vocabulary,.
ISO 7401: 2013(E): Road Vehicles – Lateral Transient Response Test Method. Open Loop Test Method.
ISO 4138: 2012(E): Passenger Cars. Steady State Circular Driving Behaviour. Open Loop Methods.
Kotulski Z., Szczepiński W.: Rachunek błędów dla inżynierów (Errors Analysis with Application to Engineering), WNT, Warszawa, 2004.
Leyko J.: Mechanika Ogólna (Fundamental Mechanics), PWN, Warszawa, 1969.
Lugner P. Basics and Features of Vehicle Dynamics. Institute of Mechanics and Mechatronics. TU Viena.
Mitschke M. Dynamik der Kraftfahrzeuge. Band C: Fahrverhalten (Vehicle Dynamics. C. Road Holding Ability). Springer Verlag, Berlin, Heidelberg, New York, 1990.
Pieniążek W., Wolak S., Nogowczyk P.: Measurement of Selected Parameters of Special Vehicle Longitudinal and Lateral Dynamics with GPS Systems. Conference: 11th International Scientific and Technical Conference on Automotive Safety Location: Casta Papiernicka, SLOVAKIA Date: APR 18-20, 2018. WOS:000435296000041.
Pieniążek W., Więckowski D., Badania Stateczności i Kierowalności Pojazdów Samochodowych (Experimental Researches of Stability and Road Holding Ability of Automotive Vehicles, - in printing process), PWN, Warszawa, 2019, 191-201.
Pokorski J., Sar H., Fundowicz P.: Comparative Investigations of Braking Efficiency with Application of GPS Navigation Receiver and Correlative Correvit-L Sensor, Zeszyty Naukowe Instytutu Pojazdów Politechniki Warszawskiej (Proceedings of the Instutute of Vehicles. Faculty of Automotive and Construction Machinery Egineering. Warsaw University of Technology, 5(96), 2013, 36-37.
RACELOGIC Support Centre. Chanel Definition (access 22-th ,Jan, 2018).
RACELOGIC RLVB3i Manual: (access: 22-th, June 2019).
RACELOGIC VBOXTools Software Version 1.11 Manual: . (access: 22-th, June 2019).
Ralston A., Rabinowitz Ph.: A first Course in Numerical Analysis 2-nd Edition. Dover Publication. Inc. Mineola, New York , 2011.
Rompe K., Heißing B.: Objektive Testverfahren für die Fahreigenschaften von Kraftfahrzeugen. Quer und Längsdynamik, (Objective Tests of Road Holding Ability for Automobiles. Lateral and Longitudinal Dynamics), Verlag TÜV Rheiland GmbH, Köln, 1984 .
Walczak S.: Zintegrowany program do komputerowego opracowania wyników badań eksperymentalnych -w środowisku MatLab- (niepublikowany) (Integrated Programme for Experimental Data Processing –in MatLab Environment – upublished), Kraków 2003.
Zomotor A.: Fahrwertechnik. Fahrverhalten. (Automobile Chassis Structure. Road Holding Ability), Vogel Buchverlag, Würzburg, 1987.
Declaration of availability