PL EN
PRACA ORYGINALNA
Development of the Construction of City Buses in Terms of Reducing the Curb Weight of the Vehicle
 
Więcej
Ukryj
1
Faculty of Mechanical Engineering, Lublin University of Technology, Polska
 
2
Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Polska
 
3
Enterprises, SIMCREATEC, Polska
 
 
Data nadesłania: 21-11-2023
 
 
Data ostatniej rewizji: 11-12-2023
 
 
Data akceptacji: 13-12-2023
 
 
Data publikacji: 28-12-2023
 
 
Autor do korespondencji
Jacek Caban   

Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618, Lublin, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;102(4):91-104
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Modern city buses are made of various construction materials and the share of material groups has changed over the decades. By replacing heavy materials for structural elements or bus components with their lighter counterparts, the kerb weight of the bus can be reduced by up to several hundred kilograms. This article presents the issues of the development of city bus design in terms of passenger space comfort and bus structure in the context of reducing the vehicle's own weight since the 1970s. The main changes in vehicle design allowing for reducing the weight of structural elements of bodies and chassis as well as the main assemblies in city buses are presented as well as research on body types in terms of aerodynamics, safety and travel comfort. It has been shown that reducing the weight of the bus does not negatively affect its load capacity and the new bus designs are equipped with safety and comfort systems, including ABS (Anti-lock Braking System), ASR (Automatic Stability Regulation), ESP (Electronic Stability Program) and air conditioning in the passenger space. Thanks to modern light construction materials, we gain the opportunity to improve safety and comfort without losing the transport capabilities developed as a result of the development of city buses over the years.
 
REFERENCJE (53)
1.
Adamiec M., Dziubiński M., Siemionek E., Drozd A.: Diagnostic of ABS and ESP systems. IOP Conference Series: Materials Science and Engineering. 2018, 421(3), 032002, DOI: 10.1088/1757-899X/421/3/032002.
 
2.
Arteaga O., Chacon S., Teran H.C., Torres Ll. G., Beltran C.V., Garrido J.O., et al.: Design and structural analysis of an interprovincial bus applying the LFRD method. Materials Today Proceedings. 2020, 27, 1, 352–358, DOI: 10.1016/j.matpr.2019.11.114.
 
3.
Barta D., Mruzek M.: Non-conventional drive and its possibilities of using in road vehicles of public transport. OPT-I 2014 – 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings. 2014, 2049–2061.
 
4.
Caputi M.V.M., Coccia R., Venturini P., Cedola L., Borello D.: Assessment of hydrogen and LNG buses adoption as sustainable alternatives to diesel fuel buses in public transportation: Applications to Italian perspective. E3S Web of Conferences. 2022, 334, 09002, DOI: 10.1051/e3sconf/202233409002.
 
5.
Culik K., Hrudkay K., Morgos J.: Operating characteristics of electric buses and their analysis. Transport Means – Proceedings of the International Conference. 2021, 251–256.
 
6.
Decker Ž., Tretjakovas J., Drozd K., Rudzinskas V., Walczak M., Kilikevičius A., et al.: Material’s Strength Analysis of the Coupling Node of Axle of the Truck Trailer. Materials. 2023, 16(9), 3399, DOI: 10.3390/ma16093399.
 
7.
Dizo J., Blatnicky M., Steisunas S., Skocilasova B.: Assessment of a rail vehicle running with the damage wheel on a ride comfort for passengers. MATEC Web of Conference. 2018, 157, 03004, DOI: 10.1051/matecconf/201815703004.
 
8.
Dziewiątkowski M., Szpica D.: Diesel Engine Full Load External Characteristic Comparison after Alternative Fuel Conversion Process. Transport Means - Proceedings of the International Conference, 2023, 1, 191–195.
 
9.
Dziubiński M., Siemionek E., Adamiec M., Drozd A., Kolodziej S.: Energy consumption of the trolleybuses. International conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors, ELMECO and AoS 2017. 2018, 1–4, DOI: 10.1109/ELMECO.2017.8267723.
 
10.
Eliasz J., Dziedzik P., Domińczak A.: Wybrane aspekty analizy materiałowo-energetycznej dla fazy budowy autobusu. Autobusy. 2012, 5, 164–169.
 
11.
Frizziero L., Galie G., Leon-Cardenas C., De Santis M., Losito M.S., Tomaiuolo A.: Design of a concept vehicle for future-oriented urban mobility using design-driven methodologies. Helion. 2023, 9(3), e14462, DOI: 10.1016/j.heliyon.2023.e14462.
 
12.
Gnap J., Dockalik M., Dydkowski G.: Examination of the development of new bus registrations with alternative powertrains in Europe. LOGI – Scientific Journal on Transport and Logistics. 2021, 12(1), 147–158, DOI: 10.2478/logi-2021-0014.
 
13.
Gnap J., Śarkan B., Konecny V.: The impact of road transport on the environment. Lectures Notes in Networks and Systems. 2020, 124, 251–309, DOI: 10.1007/978-3-030-42323-0_5.
 
14.
Gogola M., Hocova M.: Deurbanisation and mobility. Transportation Research Procedia. 2016, 14, 1193–1200, DOI: 10.1016/j.trpro.2016.05.190.
 
15.
https://autosan.pl/autobusy-mi... (accessed on 15.09.2023).
 
16.
https://brykacz.com.pl/2020/01... (accessed on 15.09.2023).
 
17.
https://pl.wikipedia.org/wiki/... (accessed on 18.09.2023).
 
18.
https://pl.wikipedia.org/wiki/... (accessed on 18.09.2023).
 
19.
https://pl.wikipedia.org/wiki/... (accessed on 15.09.2023).
 
20.
https://pl.wikipedia.org/wiki/... (accessed on 18.09.2023).
 
21.
https://pl.wikipedia.org/wiki/... (accessed on 18.09.2023).
 
22.
https://pl.wikipedia.org/wiki/... (accessed on 15.09.2023).
 
23.
https://wroclawskakomunikacja.... (accessed on 15.09.2023).
 
24.
https://www.lectura-specs.pl/p... (accessed on 15.09.2023).
 
25.
https://cdn.who.int/media/docs... (accessed on 15.05.2023).
 
26.
Hurtova I., Sejkorova M., Verner J., Sarkan B.: Comparison of electricity and fossil fuel consumption in trolleybuses and buses. Engineering for Rural Development, 2018, 17, 2079–2084, DOI: 10.22616/ ERDev2018.17.N342.
 
27.
Jenis J., Hrcek S., Brumercik F., Bastovansky R.: Design of Automatic Assembly Station for Industrial Vehicles Parts. LOGI – Scientific Journal on Transport and Logistics. 2021, 12(1), 204–213, DOI: 10.2478/logi-2021-0019.
 
28.
Kalasova A., Hajnik A., Kubalak S., Benus J., Harantova V.: The impact of actuated control on the environment and the traffic flow. Journal of Applied Engineering Science. 2022, 20(2), 305–314, DOI: 10.5937/jaes0-33043.
 
29.
Kalasova A., Kupculjakova J., Kubikova S., Palo J.: Traffic time delay modelling on the intersection in the city of Martin, using software Aimsun. Lecture Notes in Networks and Systems. 2018, 21, 203–212, DOI: 10.1007/978-3-319-64084-6_19.
 
30.
Kharchenko V., Kostenko I., Liubarskyi B., Shaida V., Kuravskyi M., Petrenko O.: Simulating the traction electric drive operation of a trolleybus equipped with mixed excitation motors and DC-DC converter. Eastern-European Journal of Enterprise Technologies. 2020, 3(9–105), 46–54, DOI: 10.15587/1729-4061.2020.205288.
 
31.
Korfant M., Gogola M.: Possibilities of using traffic planning software in Bratislava. Procedia Engineering. 2017, 192, 433–438, DOI: 10.1016/j.proeng.2017.06.075.
 
32.
Łebkowski A.: Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions. Energies. 2019, 12(5), 951, DOI: 10.3390/en12050951.
 
33.
Małek A., Taccani R., Kasperek D., Hunicz J.: Optimization of energy management in a city bus powered by the hydrogen fuel cells. Communications – Scientific Letters of the University of Zilina. 2021, 23(4), E56–E67, DOI: 10.26552/com.C.2021.4.E56-E67.
 
34.
Maretic B., Abramovic B.: Integrated passenger transport system in rural areas – a literature review. Promet Traffic Traffico. 2020, 32(6), 863–873, DOI: 10.7307/ptt.v32i6.3565.
 
35.
Metz D.: Trackling urban traffic congestion: The experience of London, Stockholm and Singapore. Case Studies on Transport Policy. 2018, 6(4), 494–498, DOI: 10.1016/j.cstp.2018.06.002.
 
36.
Milojević S., Džunić D., Marić D., Skrucany T., Mitrović S., Pešić R.: Tribological assessment of aluminum cylinder material for piston compressors in trucks and buses brake systems. Tehnicki Vjesnik. 2021, 28(4), 1268–1276, DOI: 10.17559/TV-20200915110030.
 
37.
Ribeiro P.J.G., Mendes J.F.G.: Public transport decarbonisation via urban bus fleet replacement in Portugal. Energies. 2022, 15(12), 4286, DOI: 10.3390/en15124286.
 
38.
Rybicka I., Droździel P., Komsta H.: Assessment of the Braking System Damage in the Public Transport Vehicles of a Selected Transport Company. Periodica Polytechnica Transportation Engineering. 2023, 51(2), 172–179, DOI: 10.3311/PPtr.16491.
 
39.
Sechel I.C., Mariasiu F.: Efficiency of governmental policy and programs to stimulate the use of low-emission and electric vehicles: The case of Romania. Sustainability. 2022, 14(1), 45, DOI: 10.3390/su14010045.
 
40.
Stopka O.: Modelling distribution routes in city logistics by applying operations research methods. Promet - Traffic – Traffico. 2022, 34(5), 739–754, DOI: 10.7307/ptt.v34i5.4103.
 
41.
Śarkan B., Gnap J., Kiktova M.: The importance of hybrid vehicles in urban traffic in terms of environmental impact. Archives of Automotive Engineering. 2019, 85(3), 115–122, DOI: 10.14669/AM.VOL85. ART8.
 
42.
Śarkan B., Stopka O., Li C.: The issues of measuring the exterior and interior noise of road vehicles. Communications – Scientific Letters of the University of Zilina. 2017, 19, 2, 50–55, DOI: 10.26552/com.C.2017.2.50-55.
 
43.
Skrucany T., Śarkan B., Figlus T., Synak F., Vrabel J.: Measuring of noise emitted by moving vehicles. MATEC Web of Conference. 2017, 107, 00072, DOI: 10.1051/matecconf/201710700072.
 
44.
Stecuła K., Olczak P., Kamiński P., Matuszewska D., Duong Duc H.: Towards sustainable transport: techno-economic analysis of investing in hydrogen buses in public transport in the selected city of Poland. Energies. 2022, 15(24), 9456, DOI: 10.3390/en15249456.
 
45.
Szpica D.: Combustion Systems and Fuels Used in Engines—A Short Review. Applied Sciences. 2023, 13(5), 3126, DOI: 10.3390/app13053126.
 
46.
Ulbrich D., Selech J., Kowalczyk J., Jóźwiak J., Durczak K., Gil L., et al.: Reliability analysis for unrepairable automotive components. Materials. 2021, 14(22), 7014, DOI: 10.3390/ma14227014.
 
47.
Walczak M., Szala M., Pieniak D.: Effect of Water Absorption on Tribological Properties of Thermoplastics Matrix Composites Reinforced with Glass Fibres. Advances in Science and Technology Research Journal. 2022, 16(2), 232–239, DOI: 10.12913/22998624/147515.
 
48.
Wen T.-H., Chin W.-C.-B., Lai P.-C.: Understanding the topological characteristics and flow complexity of urban traffic congestion. Physica A: Statistical Mechanics and its Applications. 2017, 473, 166–177, DOI: 10.1016/j.physa.2017.01.035.
 
49.
Winiarski G., Dziubińska A.: Analysis of a new process of forging a 2017A aluminium alloy connecting rod. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2021, 143(8), 081006, DOI: 10.1115/1.4050185.
 
50.
Wojciechowski Ł., Cisowski T., Małek A.: Route optimization for city cleaning vehicle. Open Engineering. 2021, 11(1), 483–498, DOI: 10.1515/eng-2021-0049.
 
51.
Yang R., Zhang W., Li S., Xu M., Huang W., Qin Z.: Finite Element Analysis and Optimization of Hydrogen Fuel Cell City Bus Body Frame Structure. Applied Sciences. 2023, 13(19), 10964, DOI: 10.3390/app131910964.
 
52.
Zhang J., Nazarenko Y., Zhang L., Calderon L., Lee K.-B., Garfunkel E., et al.: Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants. Environmental Science and Technology. 2013, 47(22), 13077–13085, DOI: 10.1021/es402140u.
 
53.
Zvolensky P., Kasiar L., Volna P., Barta D.: Simulated computation of the acoustic energy transfer through the structure of porous media in application of passenger carriage body. Procedia Engineering. 2017, 187, 100–109, DOI: 10.1016/j.proeng.2017.04.355.
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top