Macroscopic model of energy demand to overcome road grade resistance of vehicle motion
More details
Hide details
Poznań University of Technology, Faculty of Machines and Transportation
Publication date: 2018-09-28
The Archives of Automotive Engineering – Archiwum Motoryzacji 2018;81(3):91–108
The article discusses the problems of modeling of energy requirements to overcome grade resistance in vehicle motion in macroscopic scale simulations. Authors describe ways of modeling this requirement with the use of forward and backward facing models in microscopic simulations. The data limitation problem is defined, i.e. data only available in sparse values, describing only altitude of nodes between sections at length of several dozen to several hundred meters. Authors propose to use potential energy change as basic approximation of energy demand to overcome grade resistance and show estimated impact of motor and inverter efficiency on electric energy consumption. More accurate model is proposed based on additional road section parameter – hypothetical road peak. Based on carried out verification with an example of route and speed profile, significant improvement of energy estimation made with the three-parameter section altitude description is shown.
Allen M. Real-world range ramifications: heating and air conditioning, website of FleetCarma company, electronic source access 22.01.2014:
Barlow T J, Latham S, McCrae I S, Boulter P G. A reference book of driving cycles for use in the measurement of road vehicle emissions, version 3, TRL Limited, 2009.
Burress T. Benchmarking State-of-the-Art Technologies - 2013 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, 14.05 2013.
Chew K W, Ken L C, Goi B M. Contour Data Acquisition System for Electric Vehicle Distance Estimation Method, Applied Mechanics and Materials, Vols. 479-480.
Guzzella L, Sciarretta A. Vehicle Propulsion Systems – Introduction to Modeling and Optimization, Springer Verlag Berlin Heidelberg, 2007.
Hickman J, Hassel D, Joumard R, Samaras Z, Sorenson S. Methodology for calculating transport emissions and energy consumption, 1999.
Jazar R N. Vehicle Dynamics: Theory and Application, Springer Science and Business Media, New York 2008.
Lohse-Busch H, Duoba M, Rask E, Meyer M. Advanced Powertrain Research Facility AVTA Nissan Leaf testing and analysis, Argonne National Laboratory, 2012.
Luin B. Petelin S. Impact of road geometry on vehicle energy consumption, Transport Problems. VOLUME 12 , ISSUE 2 , June 2017.
Mashadi B, Crolla D. Vehicle powertrain systems, John Willey and Sons, Ltd, 2012.
Mohan G, Assadian F, Longo S. Comparative analysis of forward-facing models vs backwardfacing models in powertrain component sizing, IET Hybrid and Electric Vehicles Conference 2013 (HEVC: 2013).
Ohde B, Korzeniowski D, Ślaski G. Methodology for determination of particular resistance contributions in mechanical energy demand using simulation and real word velocity profiles, Journal of Mechanical and Transport Engineering, vol. 68 No. 2, 2016.
Prochowski L. Mechanika ruchu, WKiŁ, Warszawa, 2008.
Siłka W. Teoria ruchu samochodu, WNT, Warszawa 2002.
Ślaski G., Ohde B., Pikosz H., Modelowanie energochłonności eksploatacji samochodu elektrycznego w warunkach ruchu miejskiego dla potrzeb symulacji zużycia energii przez flotę taksówek, Logistyka, No. 4, 2014.
Ślaski G, Ohde B, Maciejewski M. Makroskopowy model zużycia energii i jego walidacja dla testowych cykli jezdnych; LOGISTYKA - Dodatek Nauka, 2015, nr 4.
Tannahill V R, Muttaqi K M, Sutanto D. Driver alerting system using range estimation of electric vehicles in real time under dynamically varying environmental conditions, IET Electrical Systems in Transportation, Volume 6, Issue 2, June 2016.
Treiber M, Kestling A. Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg 2013.
Ubysz A. Poszanowanie energii w pojazdach samochodowych część 1 obliczanie zużycia paliwa w pojeździe w ruchu rzeczywistym, Wydawnictwo Politechniki Śląskiej, 2011.
Declaration of availability