PL EN
PRACA ORYGINALNA
Maintenance, diagnostics and repair of traction batteries for hybrid vehicles
 
Więcej
Ukryj
1
Department of Transportation and Informatics, WSEI University in Lublin, Polska
 
2
Transportation and Informatics, WSEI University, Polska
 
3
Department of Automation, Lublin University of Technology, Polska
 
4
Research and Development, Dakro sp. z o.o., Polska
 
 
Data nadesłania: 02-07-2025
 
 
Data ostatniej rewizji: 23-11-2025
 
 
Data akceptacji: 01-12-2025
 
 
Data publikacji: 29-12-2025
 
 
Autor do korespondencji
Arkadiusz Małek   

Department of Transportation and Informatics, WSEI University in Lublin, Projektowa 4, 20-209, Lublin, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2025;110(4):73-102
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Hybrid vehicles have been widely used for more than 25 years, and their traction batteries are exposed to demanding operating conditions, particularly in urban traffic characterized by frequent regenerative braking and acceleration. Such patterns lead to progressive degradation of cell capacity and performance, highlighting the need for reliable diagnostic and repair methodologies. This article presents a comprehensive approach to traction battery diagnostics and repair for hybrid vehicles. A mobile diagnostic service, equipped with specialized instrumentation, enables simultaneous controlled charge–discharge testing of multiple battery cells. The collected measurement data are analyzed using the Metalog probability distribution family, which offers flexibility and precision in modeling the statistical characteristics of battery degradation. The methodology is demonstrated through three representative case studies of Toyota hybrid vehicle batteries. These cases illustrate different degradation pathways: gradual natural capacity fading, accelerated local overheating, and severe long-term deterioration. For each case, the approach allows for classification of cells and battery packs into categories suitable for further use, repair through selective replacement, or recycling. The integration of engineering diagnostics with statistical modeling significantly improves the accuracy of state-of-health assessments and supports efficient decision-making in practice. The mobile service context further demonstrates the method’s applicability, allowing diagnostics and repair to be performed directly at the customer’s site. The findings highlight both the economic benefits, by reducing the cost of battery replacement and extending vehicle lifetime, and the ecological advantages, by enabling second-life applications and supporting safe recycling. Thus, the proposed methodology contributes to sustainable battery management and strengthens the role of diagnostics in advancing electromobility.
REFERENCJE (69)
1.
Aghili Mehrizi A, Yeganehdoust F, Madikere Raghunatha Reddy AK, Zaghib K. Challenges and Issues Facing Ultrafast-Charging Lithium-Ion Batteries. Batteries. 2025;11(6):209. https://doi.org/10.3390/batter....
 
2.
Aghmadi A, Mohammed OA. Energy Storage Systems: Technologies and High-Power Applications. Batteries. 2024;10(4):141. https://doi.org/10.3390/batter....
 
3.
Al Muala ZA, Bany Issa MA, Bello Bugallo PM. Integrating Life Cycle Principles in Home Energy Management Systems: Optimal Load PV–Battery–Electric Vehicle Scheduling. Batteries. 2024;10(4):138. https://doi.org/10.3390/batter....
 
4.
Armenta-Déu C, Cortés H. Analysis of Kinetic Energy Recovery Systems in Electric Vehicles. Vehicles. 2023;5(2):387–403. https://doi.org/10.3390/vehicl....
 
5.
Beik Y, Dziewiątkowski M, Szpica D. Exhaust emissions of an engine fuelled by petrol and liquefied petroleum gas with control algorithm adjustment. SAE International Journal of Engines. 2020;13(5):739–759. https://doi.org/10.4271/03-13-....
 
6.
Chen K, Wang D, Guo W. A Method for Estimating the SOH of Lithium-Ion Batteries Based on Graph Perceptual Neural Network. Batteries. 2024;10(9):326. https://doi.org/10.3390/batter....
 
7.
Chudy-Laskowska K, Pisula T. An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation. Energies. 2022;15(19):7369. https://doi.org/10.3390/en1519....
 
8.
Cui Y, Shen X, Zhang H, Yin Y, Yu Z, Shi D, et al. Intrinsic Safety Risk Control and Early Warning Methods for Lithium-Ion Power Batteries. Batteries. 2024;10(2):62. https://doi.org/10.3390/batter....
 
9.
Čulík K, Hrudkay K, Morgoš J. Operating Characteristics of Electric Buses and Their Analysis. Transport Means - Proceedings of the International Conference. 6-8 October 2021, Kaunas, Lithuania, p. 251-256.
 
10.
Čulík K, Hrudkay K, Štefancová V. Possibilities of Legislative and Economic Support for Electromobility in Slovakia. Lecture Notes in Intelligent Transportation and Infrastructure. 2023;PartF1379:125–134. https://doi.org/10.1007/978-3-....
 
11.
Di Micco S, Romano F, Jannelli E, Perna A, Minutillo M. Techno-economic analysis of a multi-energy system for the co-production of green hydrogen, renewable electricity and heat. International Journal of Hydrogen Energy. 2023;48(81):31457–31467, https://doi.org/10.1016/j.ijhy....
 
12.
Dinh MC, Le TT, Park M. A Low-Cost and High-Efficiency Active Cell-Balancing Circuit for the Reuse of EV Batteries. Batteries. 2024;10(2):61. https://doi.org/10.3390/batter....
 
13.
Dittrich A, Prochazka R, Popelka J, Phu DN. Effect of HVO CNG dual-fuel operation mode on emissions and performance of CI engine. Engineering for Rural Development. 2023;22:58–63. https://doi.org/10.22616/ERDev....
 
14.
Domański M, Paszkowski J, Sergey O, Zarajczyk J, Siłuch D. Analysis of Energy Properties of Granulated Plastic Fuels and Selected Biofuels. Agricultural Engineering. 2020;24(3):1–9. http://doi.org/10.1515/agricen....
 
15.
Etxandi-Santolaya M, Mora-Pous A, Canals Casals, L, Corchero, C, Eichman, J. Quantifying the Impact of Battery Degradation in Electric Vehicle Driving through Key Performance Indicators. Batteries. 2024;10(3):103. https://doi.org/10.3390/batter....
 
16.
Farhan R, Rana IA, Baig F. Understanding the adoptability of hybrid electric vehicles (HEVs): a case study of Lahore, Pakistan. Discover Cities. 2025;2:70. https://doi.org/10.1007/s44327....
 
17.
Gabrovska M, Nikolova D, Radonjić V, Karashanova D, Baeva A, Parvanova-Mancheva T, Tzvetkov P, Petrova E, Zarkova G, Krstić J. Structure Engineering of Ni/SiO2 Vegetable Oil Hydrogenation Catalyst via CeO2. International Journal of Molecular Sciences. 2024;25(14):7585. https://doi.org/10.3390/ijms25....
 
18.
Gnap J, Dockalik M, Dydkowski G. Examination of the development of new bus registrations with alternative powertrains in Europe. LOGI – Scientific Journal on Transport and Logistics. 2021;12(1):147–158. https://doi.org/10.2478/logi-2....
 
19.
Gnap J, Dockalik M. Impact of the operation of LNG trucks on the environment. Open Engineering. 2021;11(1):937–947. https://doi.org/10.1515/eng-20....
 
20.
Gómez Díaz KY, De León Aldaco SE, Aguayo Alquicira J, Ponce Silva M, Portillo Contreras S, Sánchez Vargas O. Thermal Management Systems for Lithium-Ion Batteries for Electric Vehicles: A Review. World Electric Vehicle Journal. 2025;16(7):346. https://doi.org/10.3390/wevj16....
 
21.
González-Morales J, Mosa J, Ishiyama S, Rosero-Navarro NC, Miura A, Tadanaga K, et al. Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries. Batteries. 2024;10(3):94. https://doi.org/10.3390/batter....
 
22.
Graber G, Sabatino S, Calderaro V, Galdi V. Modeling of Lithium-Ion Batteries for Electric Transportation: A Comprehensive Review of Electrical Models and Parameter Dependencies. Energies. 2024;17(22):5629. https://doi.org/10.3390/en1722....
 
23.
Imran MS, Saleh FA. The Influence of Using Biodiesel Prepared from Cresson Oil on Emissions and Performance of CI Engines. Journal of Ecological Engineering. 2024;25(1):84–98. https://doi.org/10.12911/22998....
 
24.
Jaffal H, Guanetti L, Rancilio G, Spiller M, Bovera F, Merlo M. Battery Energy Storage System Performance in Providing Various Electricity Market Services. Batteries. 2024;10(3):69. https://doi.org/10.3390/batter....
 
25.
Jeong JW, Woo S, Koo B, Lee K. Analysis of hybrid electric vehicle performance and emission applied to LPG fuel system. Fuel. 2025;380:133225. https://doi.org/10.1016/j.fuel....
 
26.
Jurkovic M, Kalina T, Skrúcaný T, Gorzelanczyk P, L’upták V. Environmental Impacts of Introducing LNG as Alternative Fuel for Urban Buses—Case Study in Slovakia. Promet-Traffic Transportation. 2020;32(6):837–847.
 
27.
Karthikeyan B, Ramasamy P, Pandi Maharajan M, Padmamalini N, Sivakumar J, Choudhury S, Savari GF. The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application. Sustainability. 2024;16(2):872. https://doi.org/10.3390/su1602....
 
28.
Keelin TW, Howard RA. The Metalog Distributions: Virtually Unlimited Shape Flexibility, Combining Expert Opinion in Closed Form, and Bayesian Updating in Closed Form. Stanford University. 2021.
 
29.
Keelin TW. The Metalog Distributions. Decision Analysis. 2016;13(4):243–277. https://doi.org/10.1287/deca.2....
 
30.
Kinoti E, Mosetlhe TC, Yusuff AA. Multi-Criteria Analysis of Electric Vehicle Motor Technologies: A Review. World Electric Vehicle Journal. 2024;15(12):541. https://doi.org/10.3390/wevj15....
 
31.
Kosenko A, Bolotova A, Pushnitsa K, Novikov P, Popovich AA. Lithium Iron Phosphate Battery Regeneration and Recycling: Techniques and Efficiency. Batteries. 2025;11(4):136. https://doi.org/10.3390/batter....
 
32.
León R, Montaleza C, Maldonado JL, Tostado-Véliz M, Jurado F. Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles. Thermo. 2021;1(2):134–150. https://doi.org/10.3390/thermo....
 
33.
Maisuradze M, Li M, Carlomagno I, Gaboardi M, Aquilanti G, Plaisier JR, et al. Aging Mechanism of Mn-Based Prussian Blue Cathode Material by Synchrotron 2D X-ray Fluorescence. Batteries. 2024;10(4):123. https://doi.org/10.3390/batter....
 
34.
Małek A, Marciniak A, Bartnik G. The selection of an electric vehicle for the existing photovoltaic system - case study in Polish climatic conditions. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2024;103(1):38–56. https://doi.org/10.14669/AM/18....
 
35.
Małek A, Marciniak A. Selection of the photovoltaic system power for the electric vehicle. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2023;100(2):44–61. https://doi.org/10.14669/AM/16....
 
36.
Nastasi L, Fiore S. Environmental Assessment of Lithium-Ion Battery Lifecycle and of Their Use in Commercial Vehicles. Batteries. 2024;10(3):90. https://doi.org/10.3390/batter....
 
37.
Nicoletti L, Köhler P, König A, Heinrich M, Lienkamp M. Parametric modelling of weight and volume effects in battery electric vehicles, with focus on the gearbox. Proceedings of the Design Society. 2021;1:2389–2398. https://doi.org/10.1017/pds.20....
 
38.
Niewczas A, Rymarz J, Ślęzak M, Kasperek D, Hołyszko P. Reliability Study of Electric Buses in the Urban Public Transport System. Energies. 2025;18(14):3863. https://doi.org/10.3390/en1814....
 
39.
Nkembi AA, Simonazzi M, Santoro D, Cova P, Delmonte N. Comprehensive Review of Energy Storage Systems Characteristics and Models for Automotive Applications. Batteries. 2024;10(3):88. https://doi.org/10.3390/batter....
 
40.
Pata SK, Erdogan S, Pata UK, Meo MS. Greening road transport: Comparison of technologies in conventional, hybrid, and electric vehicles. Journal of Environmental Management. 2025;380:124908. https://doi.org/10.1016/j.jenv....
 
41.
Polverino P, Arsie I, Pianese C. Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon. Energies. 2021, 14(12), 3502, https://doi.org/10.3390/en1412....
 
42.
Pukalskas S, Rimkus A, Melaika M, Peceliunas R. Comparison of Conventional and Hybrid Cars Exploitation Costs. Advances in Science and Technology Research Journal. 2018;12(1):221–227. https://doi.org/10.12913/22998....
 
43.
Rufino Júnior CA, Riva Sanseverino E, Gallo P, Koch D, Diel S, Walter G, et al. Towards to Battery Digital Passport: Reviewing Regulations and Standards for Second-Life Batteries. Batteries. 2024;10(4):115. https://doi.org/10.3390/batter....
 
44.
Salek F, Resalati S, Babaie M, Henshall P, Morrey D, Yao L. A Review of the Technical Challenges and Solutions in Maximising the Potential Use of Second Life Batteries from Electric Vehicles. Batteries. 2024;10(3):79. https://doi.org/10.3390/batter....
 
45.
Schütte, M, Degen, F, Walter, H. Reducing Energy Consumption and Greenhouse Gas Emissions of Industrial Drying Processes in Lithium-Ion Battery Cell Production: A Qualitative Technology Benchmark. Batteries. 2024;10(2):64. https://doi.org/10.3390/batter....
 
46.
Settey T, Gnap J, Synák F, Skrúcaný T, Dočkalik M. Research into the impacts of driving cycles and load weight on the operation of a light commercial electric vehicle. Sustainability. 2021;13(24):13872. https://doi.org/10.3390/su1324....
 
47.
Skuza A, Jurecki R, Szumska E. Analysis of the operating parameters of electric, hybrid, and conventional vehicles on different types of roads. Open Engineering. 2023;13(1):20220443. https://doi.org/10.1515/eng-20....
 
48.
Skuza A, Jurecki R, Szumska E. Influence of Traffic Conditions on the Energy Consumption of an Electric Vehicle. Communications - Scientific letters of the University of Zilina. 2023;25(1):B22–B33. https://doi.org/10.26552/com.C....
 
49.
Sokolovskij E, Małek A, Caban J, Dudziak A, Matijošius J, Marciniak A. Selection of a Photovoltaic Carport Power for an Electric Vehicle. Energies. 2023;16(7):3126. https://doi.org/10.3390/en1607....
 
50.
Sorensen A, Utgikar V, Belt J. A Study of Thermal Runaway Mechanisms in Lithium-Ion Batteries and Predictive Numerical Modeling Techniques. Batteries. 2024;10(4):116. https://doi.org/10.3390/batter....
 
51.
Sprenger M, Kovachev G, Dölle N, Schauwecker F, Sinz W, Ellersdorfer C. Changes in the Mechanical Behavior of Electrically Aged Lithium-Ion Pouch Cells: In-Plane and Out-of-Plane Indentation Loads with Varying Testing Velocity and State of Charge. Batteries. 2023;9(2):67. https://doi.org/10.3390/batter....
 
52.
Stakens J, Mutule A, Lazdins R. Agriculture Electrification, Emerging Technologies, Trends and Barriers: A Comprehensive Literature Review. Latvian Journal of Physics and Technical Sciences. 2023;60(3):18–32. https://doi.org/10.2478/lpts-2....
 
53.
Stoma M, Dudziak A. Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland. Energies. 2023;16(20):7212. https://doi.org/10.3390/en1620....
 
54.
Stopka O, Stopková M, Pečman J. Application of Multi-Criteria Decision Making Methods for Evaluation of Selected Passenger Electric Cars: A Case Study. Communications - Scientific Letters of the University of Zilina. 2022;24(3):A133–A141. https://doi.org/10.26552/com.C....
 
55.
Synák F, Synák J, Skrúcaný T. Assessing the addition of hydrogen and oxygen into the engine's intake air on selected vehicle features. International Journal of Hydrogen Energy. 2021;46(62):31854–31878. https://doi.org/10.1016/j.ijhy....
 
56.
Szpica D, Czaban J. Investigating of the combustion process in a diesel engine fueled with conventional and alternative fuels. 23rd International Scientific Conference. Transport Means 2019, Palanga, Lithuania, 2–4 Oct. 2019, Transport Means - Proceedings of the International Conference. 2019:176–181.
 
57.
Szpica D, Dziewiatkowski, M. Catalyst Conversion Rates Measurement on Engine Fueled with Compressed Natural Gas (CNG) Using Different Operating Temperatures. Mechanika. 2021;27:492–497. https://doi.org/10.5755/j02.me....
 
58.
Szpica D. Fuel dosage irregularity of LPG pulse vapor injectors at different stages of wear. Mechanika. 2016;22(1):44–50. http://dx.doi.org/10.5755/j01.....
 
59.
Toro L, Moscardini E, Baldassari L, Forte F, Falcone I, Coletta J, et al. A Systematic Review of Battery Recycling Technologies: Advances, Challenges, and Future Prospects. Energies. 2023;16(18):6571. https://doi.org/10.3390/en1618....
 
60.
Wang G, Guo X, Chen J, Han P, Su Q, Guo M, et al. Safety Performance and Failure Criteria of Lithium-Ion Batteries under Mechanical Abuse. Energies. 2023;16(17):6346. https://doi.org/10.3390/en1617....
 
61.
Wang J, Zhang C, Meng X, Zhang L, Li X, Zhang W. A Novel Feature Engineering-Based SOH Estimation Method for Lithium-Ion Battery with Downgraded Laboratory Data. Batteries. 2024;10(4):139. https://doi.org/10.3390/batter....
 
62.
Wong RCP, Szeto WY, Yang WH. Customers’ selections between premium electric taxis and liquefied petroleum gas taxis. Transportation Research Part D: Transport and Environment. 2020;78:102172. https://doi.org/10.1016/j.trd.....
 
63.
Xu C, Ma C, Souri M, Moztarzadeh H, Nasr Esfahani M, Jabbari M, et al. Numerical Investigation of Thermal Management of a Large Format Pouch Battery Using Combination of CPCM and Liquid Cooling. Batteries. 2024;10(4):113. https://doi.org/10.3390/batter....
 
64.
Yang T, Li J, Xin Q, Zhang H, Zeng J, Agbossou K, et al. Thermal Performance Analysis of a Prismatic Lithium-Ion Battery Module under Overheating Conditions. Batteries. 2024;10(3):86. https://doi.org/10.3390/batter....
 
65.
Zanoletti A, Carena E, Ferrara C, Bontempi E. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries. 2024;10(1):38. https://doi.org/10.3390/batter....
 
66.
Zhang Y, Zhong Y, Lu S, Zhang Z, Tan D. A Comprehensive Review of the Properties, Performance, Combustion, and Emissions of the Diesel Engine Fueled with Different Generations of Biodiesel. Processes. 2022;10(6):1178. https://doi.org/10.3390/pr1006....
 
67.
https://greencarjournal.com/do... (accessed on 2025.05.24).
 
68.
https://www.bayesfusion.com/20... (accessed on 2025.04.21).
 
69.
http://metalogdistributions.co... (accessed on 2025.08.16).
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top