PRACA ORYGINALNA
Safety Features of the Transport System in the Transition to Industry 4.0
Irina Makarova 1  
,   Ksenia Shubenkova 1  
,   Polina Buyvol 1  
,   Vadim Mavrin 1  
,   Ilsur Giniyatullin 1  
,   Kirill Magdin 1  
 
Więcej
Ukryj
1
Service of Transport Systems, Kazan Federal University, Russia
AUTOR DO KORESPONDENCJI
Ksenia Shubenkova   

Service of Transport Systems, Kazan Federal University, 423800, Naberezhnye Chelny, Russia
Data nadesłania: 19-11-2019
Data ostatniej rewizji: 10-12-2019
Data akceptacji: 13-12-2019
Data publikacji: 23-12-2019
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2019;86(4):79–99
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE ARTYKUŁU
World trends in the field of intellectualization and digitalization of all activity spheres, caused by the rapid growth of engineering and technology, have caused serious changes in the transport sector. Road transport has a negative impact on the environment, to a large extent this relates to city’s air pollution in urbanization conditions and the vehicle fleet accelerated growth. Reducing the negative vehicles impact on the environment is possible only through the development of integrated solutions for managing the transport system. Goal of this article is to study the applicability of decision support systems and simulation models to predict the possibility of reducing the negative vehicles impact on the environment. The developed simulation models for road network problem areas of the Naberezhnye Chelny city allow us to study the influence of traffic parameters on the volume of harmful substances in vehicles exhaust gases, as well as noise pollution. Using the model, it is also possible to assess the possible reduction in the degree of air pollution when converting engines public transport to natural gas fuel. Model experiments showed the adequacy of the proposed approach.
 
REFERENCJE (40)
1.
Al-Dabbagh M.S.M., Al-Sherbaz A., Turner S.: The Impact of Road Intersection Topology on Traffic Congestion in Urban Cities. Advances in Intelligent Systems and Computing. Springer Verlag, Berlin, 2019, 868, 1196-1207, DOI: 10.1007/978-3-030-01054-6_83.
 
2.
Alsolami F., Amin T., Moshkov M., Zielosko B., Żabiński K.: Comparison of heuristics for optimization of association rules. Fundamenta Informaticae. 2019, 166(1), 1-14, DOI: 10.3233/FI-2019-1791.
 
3.
Anari M.H.S., Movafagh A.: Environmental noise pollution level at Birjand city using statistical and GIS techniques. Journal of Environmental Studies. 2014, 40(3), 693-710.
 
4.
Anderson J.M., Kalra N., Stanley K.D., Sorensen P., Samaras C., Oluwatola O.A.: Autonomous Vehicle Technology. A Guide for Policymakers. RAND Corporation, Santa Monica, 2016. https://www.rand.org/content/d... (accessed on 11.11.19).
 
5.
Clark G.W., Andel T.R., Doran M.V.: Simulation-Based Reduction of Operational and Cybersecurity Risks in Autonomous Vehicles. 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management. Las Vegas, United States, 2019, 140-146, DOI: 10.1109/COGSIMA.2019.8724160.
 
6.
Cucurachi S., Schiess S., Froemelt A., Hellweg S.: Noise footprint from personal land-based mobility. Journal of Industrial Ecology. 2019, 23(5), 1028-1038, DOI: 10.1111/jiec.12837.
 
7.
Czechowski P.O., Oniszczuk-Jastrząbek A., Czuba T.: Eco-driving: behavioural pattern change in Polish passenger vehicle drivers. E3S Web of Conferences. Zakopane, Poland, 2018, 28, 01009, DOI: 10.1051/e3sconf/20182801009.
 
8.
Danciulescu V., Bucur E., Bratu M., Pascu L.F., Vasile A., Bratu M.: Correlations between noise level and pollutants concentration in order to assess the level of air pollution induced by heavy traffic. Journal of Environmental Protection and Ecology. 2015, 16(3), 815-823.
 
9.
Davies H.W., Vlaanderen J.J., Henderson S.B., Brauer M.: Correlation between co-exposures to noise and air pollution from traffic sources. Occupational and Environmental Medicine. 2009, 66(5), 347-350, DOI: 10.1136/oem.2008.041764.
 
10.
Foraster M., Medina-Ramon M., Basagana X., Bouso L., Elosua R., Juvinya D. et al.: Noise and Air Pollution Correlation and Its Determinants in the City of Girona. Epidemiology. 2009, 20(6), S180, DOI: 10.1097/01.ede.0000362608.59588.84.
 
11.
Galkin A., Lobashov O., Capayova S., Hodakova D., Schlosser T.: Perspective of decreasing of road traffic pollution in the cities. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. Albena, Bulgaria, 2018, 18(4.2), 547-554, DOI: 10.5593/sgem2018/4.2/S19.071.
 
12.
Gorodokin V., Almetova Z., Shepelev V.: Procedure for calculating on-time duration of the main cycle of a set of coordinated traffic lights. Transportation Research Procedia. 2017, 20, 231-235, DOI: 10.1016/j.trpro.2017.01.060.
 
13.
Goryaev N., Myachkov K., Larin O.: Optimization of “green wave” mode to ensure priority of fixed-route public transport. Transportation Research Procedia. 2018, 36, 231-236, DOI: 10.1016/j.trpro.2018.12.072.
 
14.
He Y., Liu Z., Du S.: Prediction of Recovery Time of Urban Traffic Accident Based on Active Flow-Split. 2016 International Conference on Smart City and Systems Engineering (ICSCSE). Zhangjiajie, Hunan, China, 2016, 7-9, DOI: 10.1109/ICSCSE.2016.0012.
 
15.
Hlasny T., Fanti M.P., Mangini A.M., Rotunno G., Turchiano B.: Optimal Fuel Consumption for Heavy Trucks: a Review. 2017 IEEE International Conference on Service Operations and Logistics, and Informatics. 2017, 80-85, DOI: 10.1109/SOLI.2017.8120974.
 
16.
Kampf R., Stopka O., Kubasakova I., Zitricky V.: Macroeconomic Evaluation of Projects Regarding the Traffic Constructions and Equipment. Procedia Engineering. 2016, 161, 1538-1544, DOI: 10.1016/j.proeng.2016.08.623.
 
17.
Kang W., Xiong G., Lv Y., Dong X., Zhu F., Kong Q.: Traffic signal coordination for emergency vehicles. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao, China, 2014, 157-161, DOI: 10.1109/ITSC.2014.6957683.
 
18.
Kapski D., Kasyanik V., Lobashov O., Volynets A., Kaptsevich O., Galkin A.: Estimating the Parameters of Traffic Flows on the Basis of Processing of Localization Data on the Movement of Vehicles. Communications-Scientific letters of the University of Zilina. 2019, 21(2), 89-99.
 
19.
Khaustov A., Korobova O., Redina M., Kakovkina A., Kudashova Y.: Soil Air Quality in the Urban Ecosystems: Environmental Monitoring of the Campus of the Rudn-University. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. Albena, Bulgaria, 2018, 18(5.2), 869-874, DOI: 10.5593/sgem2018/5.2/S20.112.
 
20.
Le Vine, S., Zolfaghari, A., Polak, J.: Autonomous cars: The tension between occupant experience and intersection capacity. Transportation Research Part C: Emerging Technologies. 2015, 52, 1-14, DOI: 10.1016/j.trc.2015.01.002.
 
21.
Litman T.: Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Todd Alexander Litman, Victoria, 2019. https://www.vtpi.org/avip.pdf (accessed on 11.11.19).
 
22.
Lizbetin J., Stopka O., Kurenkov P.V.: Declarations Regarding The Energy Consumption And Emissions Of The Greenhouse Gases In The Road Freight Transport Sector. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 83(1), 59-72, DOI: 10.14669/AM.VOL83.ART4.
 
23.
Makarova I., Shubenkova K., Mavrin V., Buyvol P.: Improving safety on the crosswalks with the use of fuzzy logic. Transport Problems. 2018, 13(1), 97-109, DOI: 10.21307/tp.2018.13.1.9.
 
24.
Mavrin V., Makarova I., Prikhodko A.: Assessment of the influence of the noise level of road transport on the state of the environment. Transportation Research Procedia. 2018, 36, 514–519, DOI: 10.1016/j.trpro.2018.12.138.
 
25.
Milojevic M., Rakocevic V.: Distributed road traffic congestion quantification using cooperative VANETs. 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET). Piran, Slovenia, 2014, 203-210, DOI: 10.1109/MedHocNet.2014.6849125.
 
26.
Ondrus, J., Karon, G.: Video System as a Psychological Aspect of Traffic Safety Increase. Communications in Computer and Information Science. Springer Verlag, Berlin, 2017, 715, 167-177, DOI: 10.1007/978-3-319-66251-0_14.
 
27.
Preparing for the Future of Transportation: Automated Vehicles 3.0: https://www.nhtsa.gov/press-re... (accessed on 11.11.19).
 
28.
Skrúcaný T., Kendra M., Stopka O., Milojević S., Figlus T., Csiszár C.: Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries. Sustainability (Switzerland). 2019, 11(18), 4948, DOI: 10.3390/su11184948.
 
29.
Stańczyk U., Zielosko B., Żabiński K.: Application of Greedy Heuristics for Feature Characterisation and Selection: A Case Study in Stylometric Domain. Lecture Notes in Computer Science. Springer Verlag, Berlin, 2018, 11103 LNAI, 350-362, DOI: 10.1007/978-3-319-99368-3_27.
 
30.
Takahashi J.: An overview of cyber security for connected vehicles. IEICE Transactions on Information and Systems. 2018, E101D(11), 2561-2575, DOI: 10.1587/transinf.2017ICI0001.
 
31.
Tsiulin S., Hilmola O.-P., Goryaev N.: Barriers towards development of urban consolidation centres and their implementation: Literature review. World Review of Intermodal Transportation Research. 2017, 6(3), 251-272, DOI: 10.1504/WRITR.2017.086235.
 
32.
Turcu C.E., Găitan V.G., Turcu C.O.: An internet of things-based distributed intelligent system with self-optimization for controlling traffic-light intersections. 2012 International Conference on Applied and Theoretical Electricity (ICATE). Craiova, Romania, 2012, 1-5, DOI: 10.1109/ICATE.2012.6403461.
 
33.
Viti F., Tampere C.: Models and Technologies for Intelligent Transportation Systems: New Challenges and Metaheuristic Solutions for Large-Scale Network Applications. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations. 2014, 18, 1-4, DOI: 10.1080/15472450.2013.774678.
 
34.
Vujić M.: Sustav dinamičkih prioriteta za vozila javnoga gradskoga prijevoza u automatskom upravljanju prometom. DOKTORSKI RAD. Zagreb, 2013, 1-141, (in Croatian: Vujic M.: Dynamic priority Systems for Public Transport in Urban Automatic Traffic Control. Thesis for Ph.D. Zagreb, 2013, 1-141).
 
35.
Wang S., Djahel S., McManis J.: A Multi-Agent based vehicles re-routing system for unexpected traffic congestion avoidance. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao, China, 2014, 2541-2548, DOI: 10.1109/ITSC.2014.6958097.
 
36.
Yang D., Zhou X., Su G., Liu S.: Model and Simulation of the Heterogeneous Traffic Flow of the Urban Signalized Intersection with an Island Work Zone. IEEE Transactions on Intelligent Transportation Systems. 2019, 20(5), 1719-1727, DOI: 10.1109/TITS.2018.2834910.
 
37.
Zahabi S.A.H., Miranda-Moreno L., Patterson Z., Barla P.: Impacts of built environment and emerging green technologies on daily transportation greenhouse gas emissions in Quebec cities: a disaggregate modeling approach. Transportation. 2017, 44(1), 159-180, DOI: 10.1007/s11116-015-9631-0.
 
38.
Zinko R., Stotsko Z., Hlobchak M.: Modeling Of The Ecological Condition Of The Large Cities Road Network. The Archives of Automotive Engineering. 2019, 84(2), 91-101, DOI: 10.14669/AM.VOL84.ART7.
 
39.
Газоанализатор ЭЛАН. Руководство по эксплуатации. ЭКИТ 5.940.000 РЭ: http://www.gasdetecto.ru/files... (accessed on 11.11.19), (in Russian: ELAN gas analyser. EKIT 5.940.000 RE).
 
40.
Яндекс. Народная карта: https://n.maps.yandex.ru/#!/?z... (accessed on 11.11.19), (in Russian: Yandex. People’s map).
 
eISSN:2084-476X