PL EN
PRACA ORYGINALNA
Determination of the deviation of the on-board computer in the vehicle when determining the average fuel consumption
 
Więcej
Ukryj
1
Faculty of Operation and Economic of Transport and Communications, University of Zilina
AUTOR DO KORESPONDENCJI
Michal Loman   

Faculty of Operation and Economic of Transport and Communications, University of Zilina
Data nadesłania: 02-02-2021
Data ostatniej rewizji: 22-02-2021
Data akceptacji: 03-03-2021
Data publikacji: 31-03-2021
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2021;91(1):25–35
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Fuel consumption measurement itself is a demanding process and it is difficult to determine the exact consumption of a vehicle. Fuel consumption can be determined in various ways. One way to determine consumption is through driving tests. We know several types of driving tests. Nowadays, most vehicles and all new vehicles can provide a wealth of data to the driver directly during vehicle operation. One of them is the data on the consumption of the vehicle also through the on-board computer located in the vehicle. The information provided to the driver may not reflect reality. In most cases, they are inaccurate and do not correspond to reality. Therefore, the subject of the research will be to verify the accuracy of the provided data on vehicle consumption by the on-board computer. The aim of the research will be to determine the extent to which consumption data are true. Vehicle consumption, as well as measurements are performed on one vehicle in every day traffic. This will ensure that it is possible to compare the measured data with each other.
 
REFERENCJE (29)
1.
Ahn K., Rakha H., Trani A., Van Aerde M.: Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. Journal of transportation engineering. 2002, 128(2), 182–190, DOI: 10.1061/(ASCE)0733-947X(2002)128:2(182).
 
2.
Ben-Chaim M., Shmerling E., Kuperman A.: Analytic modeling of vehicle fuel consumption. Energies. 2013, 6(1), 117–127, DOI: 10.3390/en6010117.
 
3.
Caban J., Vrábel J., Šarkan B., Ignaciuk P.: About eco-driving, genesis, challenges and benefits, application possibilities. Transportation Research Procedia. 2019, 40, 1281–1288, DOI: 10.1016/j.trpro.2019.07.178.
 
4.
Caban J., Gniecka A., Holeša L.: Alternative fuels for diesel engines. Advances in Science and Technology Research Journal. 2013, 7(20), 70–74, DOI: 10.5604/20804075.1073063.
 
5.
Decree no. 131/2019, Office for Standardization, Metrology and Testing of the Slovak Republic on measuring instruments and metrological control (acessed on 31.01.2021).
 
6.
Driving style: https://www.webdispecink.cz/sk... (acessed on 30.01.2021).
 
7.
Faria M.V., Duarte G.O., Varella R.A., Farias T.L., Baptista P.C.: How do road grade, road type and driving aggressiveness impact vehicle fuel consumption? Assessing potential fuel savings in Lisbon, Portugal. Transportation Research Part D: Transport and Environment. 2019, 72, 148–161, DOI: 10.1016/j.trd.2019.04.016.
 
8.
Frey H.C., Unal A., Rouphail N.M., Colyar J.D.: On-road measurement of vehicle tailpipe emissions using a portable instrument. Journal of the Air & Waste Management Association. 2003, 53(8), 992–1002, DOI: 10.1080/10473289.2003.10466245.
 
9.
Hiraoka T., Terakado Y., Matsumoto S., Yamabe S.: Quantitative evaluation of eco-driving on fuel consumption based on driving simulator experiments. Proceedings of the 16th World Congress on Intelligent Transport Systems. 2009, 21–25.
 
10.
Howey D.A., Martinez-Botas R.F., Cussons B., Lytton L.: Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. Transportation Research Part D: Transport and Environment. 2011, 16(6), 459–464, DOI: 10.1016/j.trd.2011.04.001.
 
11.
Hunt S.W., Odhams A.M.C., Roebuck R.L., Cebon D.: Parameter measurement for heavy-vehicle fuel consumption modelling. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2011, 225(5), 567–589, DOI: 10.1177/2041299110394512.
 
12.
Kukučka P.: Uncertainties of measurement of electrical quantities (2). In AT&P journal. [online]. 2009, 2 [acessed on 31.01.2021]. https://www.atpjournal.sk/buxu.... ISSN: 1336-233X.
 
13.
Legislation in metrology: http://kz.slm.sk/?legislativa_... (aceseed on 31.01.2021).
 
14.
Li L., Sun H., Yang S., Ding X., Wang J., Jiang J., et. al.: Online calibration and compensation of total odometer error in an integrated system. Measurement. 2018, 123, 69–79, DOI: 10.1016/j.measurement.2018.03.044.
 
15.
Li Y., Duan X., Fu J., Liu J., Wang S., Dong H., et. al.: Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions. Energy. 2019, 189, 116218, DOI: 10.1016/j.energy.2019.116218.
 
16.
Liaquat A.M., Kalam M.A., Masjuki H.H., Jayed M.H.: Potential emissions reduction in road transport sector using biofuel in developing countries. Atmospheric Environment. 2010, 44(32), 3869–3877, DOI: 10.1016/j.atmosenv.2010.07.003.
 
17.
Liu F., Zhao F., Liu Z., Hao H.: The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: the China case. International Journal of Hydrogen Energy. 2018, 43(50), 22604–22621, DOI:10.1016/j.ijhydene.2018.10.088.
 
18.
Luk J.M., Kim H.C., De Kleine R., Wallington T.J., MacLean H.L.: Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains. Environmental science & technology. 2017, 51(15), 8215–8228, DOI: 10.1021/acs.est.7b00909.
 
19.
Małek A., Caban J., Wojciechowski Ł.: Charging electric cars as a way to increase the use of energy produced from RES. Open Engineering. 2020, 10.1, 98–104, DOI: 10.1515/eng-2020-0009.
 
20.
Meyer V.R.: Measurement uncertainty. Journal of Chromatography A, 2007, 1158(1-2), 15–24, DOI: 10.1016/j.chroma.2007.02.082.
 
21.
Nemec D., Janota A., Hruboš M., Šimák V.: Design of an electronic odometer for DC motors. Transportation Research Procedia. 2019, 40, 405–412, DOI: 10.1016/j.trpro.2019.07.059.
 
22.
Ong H.C., Mahlia T.M.I., Masjuki H.H.: A review on emissions and mitigation strategies for road transport in Malaysia. Renewable and Sustainable Energy Reviews. 2011, 15(8), 3516–522, DOI: 10.1016/j.rser.2011.05.006.
 
23.
Pitera K., Boyle L.N., Goodchild A.V.: Economic analysis of onboard monitoring systems in commercial vehicles. Transportation research record. 2013, 2379(1), 64–71, DOI: 10.3141/2379-08.
 
24.
Rievaj V., Synák F.: Does electric car produce emissions? Scientific Journal of Silesian University of Technology. Series Transport. 2017, 94, 187–197, DOI: 10.20858/sjsutst.2017.94.17.
 
25.
Rievaj V., Mokrickova L., Rievaj J.: Impact of driving techniques on fuel consumption. Communications-Scientific letters of the University of Zilina. 2016, 18(2), 72–75.
 
26.
Skrúcaný T., Stopková M., Stopka O., Kalašová A., Ovčiarik P.: User’s determination of a proper method for quantifying fuel consumption of a passenger car with compression ignition engine in specific operation conditions. Open Engineering. 2020, 11(1), 151–160, DOI: 10.1515/eng-2021-0018.
 
27.
Skrucany T., Stopková M., Stopka O., Milojević S.: Design of a daily-user methodology to detect fuel consumption in cars with spark ignition engine. Applied Engineering Letters. 2020, 5(3), 80–85, DOI: 10.18485/aeletters.2020.5.3.2.
 
28.
Skrúcaný T., Kendra M., Stopka O., Milojević S., Figlu, T., Csiszár C.: Impact of the electric mobility implementation on the greenhouse gases production in central European countries. Sustainability. 2019, 11(18), 4948, DOI: 10.3390/su11184948.
 
29.
Ying Yao, Xiaohua Zhao, Chang Liu, Jian Rong, Yunlong Zhang, Zhenning Dong, et. al.: Vehicle Fuel Consumption Prediction Method Based on Driving Behavior Data Collected from Smartphones. Journal of Advanced Transportation. 2020, 11(18), DOI: 10.1155/2020/9263605.
 
Deklaracja dostępności
 
eISSN:2084-476X