PL EN
PRACA ORYGINALNA
Innovative approach to electric vehicle diagnostics
 
Więcej
Ukryj
1
Department of Transportation and Informatics, University of University of Economics and Innovation in Lublin, Polska
2
Department of Engineering and Architecture, University of Trieste, Italy
AUTOR DO KORESPONDENCJI
Arkadiusz Małek   

Department of Transportation and Informatics, University of University of Economics and Innovation in Lublin, Projektowa 4, 20-209, Lublin, Polska
Data nadesłania: 08-06-2021
Data ostatniej rewizji: 18-06-2021
Data akceptacji: 22-06-2021
Data publikacji: 30-06-2021
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2021;92(2):49–67
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Electromobility is associated with the ever faster development and introduction of new electric vehicles to the market. They use an electric motor to drive the wheels of the vehicle and the necessary electricity is stored in traction batteries. Electric vehicles have a different construction than traditional vehicles i.e. powered by internal combustion engines. For this reason, the manner of use, maintenance and service are different. Familiarization with selected operational issues of electric vehicles positively affects the reliability of their usage as well as safety and comfort of driving. An important component of electric vehicles is the traction battery. Its proper operation influences the long-term preservation of the initial energy capacity and, thus, the range of the vehicle. The article presents the tests of the state of traction batteries of a small electrically powered city vehicle. The vehicle, the batteries and the diagnostic devices used to assess the condition of the battery are described in detail. Based on the literature analysis and the observation of market trends, a fast and effective method of assessment of the technical condition of batteries in electric vehicles was proposed. The method has been tested on the selected vehicle. The technical condition of the battery in the vehicle was assessed after 4.5 years of operation and 30,000 km mileage.
 
REFERENCJE (54)
1.
Aguilar-Dominguez D., Ejeh J., Dunbar A.D.F., Brown S.F.: Machine learning approach for electric vehicle availability forecast to provide vehicle-to-home services. Energy Reports. 2021, 7, 71–80, DOI: 10.1016/j.egyr.2021.02.053.
 
2.
Caban J.: Study of eco-driving possibilities in passenger car used in urban traffic. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2021, 91(1), 37–48, DOI:10.14669/AM.VOL91.ART3.
 
3.
Colmenar-Santos A., Muñoz-Gómez A-M., Rosales-Asensio E., López-Rey Á.: Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. Energy. 2019, 183, 61–74, DOI: 10.1016/j.energy.2019.06.118.
 
4.
Conradie P.D.F., Asekun O.O., Skrúcaný T., Kendra M., Stopka O.: The effect of fuel on the energy consumption and production of greenhouse gases in transport. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2018, 82(4), 5–14, DOI:10.14669/AM.VOL82.ART1.
 
5.
Di Foggia G.: Drivers and challenges of electric vehicles integration in corporate fleet: An empirical survey. Research in Transportation Business & Management. 2021, 100627, DOI: 10.1016/j.rtbm.2021.100627.
 
6.
Dobrzański D.: Overview and characteristics of the EV fast charging connector systems. Maszyny Elektryczne - Zeszyty Problemowe. 2017, 115(3), 91–96.
 
7.
Du J., Liu Y., Mo X., Li Y., Li J., Wu X., et al.: Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles. Applied Energy. 2019, 255, 113793, DOI: 10.1016/j.apenergy.2019.113793.
 
8.
Dziubiński M., Litak G., Drozd A., Stokłosa J., Marciniak A.: Modeling method embedded into diagnostics, reliability and maintenance - models as knowledge representation systems. Proceedings of the 2nd International Conference on Reliability Systems Engineering (ICRSE) 2017, 17188202, DOI: 10.1109/ICRSE.2017.8030716.
 
9.
Erd A., Stokłosa J.: Main Design Guidelines for Battery Management Systems for Traction Purposes. Proceedings of the XI International Scientific and Technical Conference Automotive Safety 2018. Slovakia, 2018, DOI: 10.1109/AUTOSAFE.2018.8373345.
 
10.
Flasza J.: Electromagnicity in Poland: challenges and possibilities taking into account intelligent installation RES. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe. 2017, 6, 1196–1198.
 
11.
Fragiacomo P., Piraino F., Genovese M.: Insights for Industry 4.0 Applications into a Hydrogen Advanced Mobility. Procedia Manufacturing. 2020, 42, 239–245, DOI: 10.1016/j.promfg.2020.02.077.
 
12.
Gan Y., Chen Z., Wu L., Cheng S., Lin P.: Fault diagnosis of PV array using adaptive network based fuzzy inference system. Proceedings of the IOP Conf. Series: Earth and Environmental Science. 2020, 467, 012083, DOI: 10.1088/1755-1315/467/1/012083.
 
13.
Gan Y., Wang M., Lu Z., Kelly J.: Taking into account greenhouse gas emissions of electric vehicles for transportation de-carbonization. Energy Policy. 2021, 155, 112353, DOI: 10.1016/j.enpol.2021.112353.
 
14.
Gis W., Gis M.: Overview of the method and state of hydrogenization of road transport in the world and the resulting development prospects in Poland. Open Engineering. 2021, 11(1), 570–583, DOI: 10.1515/eng-2021-0039.
 
15.
Globisch J., Plötz P., Dütschke E., Wietschel M.: Consumer preferences for public charging infrastructure for electric vehicles. Transport Policy. 2019, 81, 54–63, DOI:10.1016/j.tranpol.2019.05.017.
 
16.
Gnann T., Funke S., Jakobsson N., Plötz P., Sprei F., Bennehag A.: Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transportation Research Part D: Transport and Environment. 2018, 62, 314–329, DOI:10.1016/j.trd.2018.03.004.
 
17.
Gołębiewski W.: Flexibility of motors of selected electric vehicles. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe. 2017, 7-8, 78–81.
 
18.
Gope D., Goel S.: Design optimization of permanent magnet synchronous motor using Taguchi method and experimental validation. International Journal of Emerging Electric Power Systems. 2021, 22(1), 9–20, DOI: 10.1515/ijeeps-2020-0169.
 
19.
Habla W., Huwe V., Kesternich M.: Electric and conventional vehicle usage in private and car sharing fleets in Germany. Transportation Research Part D: Transport and Environment. 2021, 93,102729, DOI: 10.1016/j.trd.2021.102729.
 
20.
Ibrahim A., Jiang F.: The electric vehicle energy management: An overview of the energy system and related modeling and simulation. Renewable and Sustainable Energy Reviews. 2021, 144, 111049, DOI: 10.1016/j.rser.2021.111049.
 
21.
Kostopoulos Em., Spyropoulos G., Christopoulos K., Kaldellis J.K.: Solar energy contribution to an electric vehicle needs on the basis of long-term measurements. Procedia Structural Integrity. 2018, 10, 203–210, DOI:10.1016/j.prostr.2018.09.029.
 
22.
Łagowski P.: The Effect of Biofuel on the Emission of Exhaust Gas from an Engine with the Common Rail System. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2020, 90(4), 33–44, DOI:10.14669/AM.VOL90.ART3.
 
23.
Laib F., Braun A., Rid W.: Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart. Germany. Transportation Research Procedia. 2019, 37, 377–384, DOI: 10.1016/j.trpro.2018.12.206.
 
24.
Lee R., Brown S.: Social & locational impacts on electric vehicle ownership and charging profiles. Energy Reports. 2021, 7(2), 42–48, DOI: 10.1016/j.egyr.2021.02.057.
 
25.
Li X., Dai K., Wang Z., Han W.: Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method. Journal of Energy Storage. 2020, 7, 101121, DOI: 10.1016/j.est.2019.101121.
 
26.
Liberto C., Valenti G., Orchi S., Lelli M., Nigro M., Ferrara M.: The Impact of Electric Mobility Scenarios in Large Urban Areas: The Rome Case Study. IEEE Transactions on Intelligent Transportation Systems. 2018, 19(11), 3540–3549, DOI: 10.1109/TITS.2018.2832004.
 
27.
Madeti S.R., Singh S.: Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews. 2017, 67, 1180–1207, DOI: 10.1016/j.rser.2016.09.088.
 
28.
Małek A., Caban J., Wojciechowski Ł.: Charging electric cars as a way to increase the use of energy produced from RES. Open Engineering. 2020, 10(1), 98–104, DOI:10.1515/eng-2020-0009.
 
29.
Małek A., Taccani R.: Long-term test of an electric vehicle charged from a photovoltaic carport. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 86(4), 55–63, DOI:10.14669/AM.VOL86.ART4.
 
30.
Mehrjerdi H.: Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International Journal of Hydrogen Energy. 2019, 44(23), 11574–11583, DOI:10.1016/j.ijhydene.2019.03.158.
 
31.
Merkisz-Guranowska A., Daszkiewicz P.: Possibility of reducing CO2 emissions for example electric vehicles. Journal of KONES Powertrain and Transport. 2014, 21(3), 211–217, DOI: 10.5604/12314005.1133215.
 
32.
Mruzek M., Gajdáč I., Kučera L., Gajdošík T.: The Possibilities of Increasing the Electric Vehicle Range. Procedia Engineering. 2017, 192, 621–625, DOI: 10.1016/j.proeng.2017.06.107.
 
33.
Muha R., Perosa A.: Energy consumption and carbon footprint of an electric vehicle and a vehicle with an internal combustion engine. Transport Problems. 2018, 13(2), 49–58, DOI: 10.20858/tp.2018.13.2.5.
 
34.
Nait-Sidi-Moh A., Ruzmetov A., Bakhouya M., Naitmalek Y., Gaber J.: A Prediction Model of Electric Vehicle Charging Requests, Procedia Computer Science. 2018, 141, 127–134, DOI:10.1016/j.procs.2018.10.158.
 
35.
Nian V., Hari M.P., Yuan J.: The prospects of electric vehicles in cities without policy support. Energy Procedia. 2017, 143, 33–38, DOI: 10.1016/j.egypro.2017.12.644.
 
36.
Novoa L., Brouwer J.: Dynamics of an integrated solar photovoltaic and battery storage nanogrid for electric vehicle charging. Journal of Power Sources. 2018, 399, 166–178, DOI:10.1016/j.jpowsour.2018.07.092.
 
37.
Parker N., Breetz H.L., Salon D., Wigginton Conway M., Williams J., Patterson M.: Who saves money buying electric vehicles? Heterogeneity in total cost of ownership. Transportation Research Part D: Transport and Environment. 2021, 96, 102893, DOI: 10.1016/j.trd.2021.102893.
 
38.
Satyendra Kumar M., Revankar S.T.: Development scheme and key technology of an electric vehicle: An overview. Renewable and Sustainable Energy Reviews. 2017, 70, 1266–1285, DOI: 10.1016/j.rser.2016.12.027.
 
39.
Schücking M., Jochem P.: Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets. Applied Energy. 2021, 293, 116649, DOI: 10.1016/j.apenergy.2021.116649.
 
40.
Seddig K., Jochem P., Fichtner W.: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics. Applied Energy. 2019, 242, 769–781, DOI: 10.1016/j.apenergy.2019.03.036.
 
41.
Stańczyk T.L., Hyb L.: Technological and organisational challenges for e-mobility. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 84(2), 57–70, DOI:10.14669/AM.VOL84.ART5.
 
42.
Subramaniam R., Dhinakaran R.: Design and modeling of an electric vehicle for facilitating door delivery of online orders. Materials Today: Proceedings. 2021, 42, 955–961, DOI: 10.1016/j.matpr.2020.11.909.
 
43.
Synák F., Gaňa J., Rievaj V., Mokričková L.: Ways of reducing carbon dioxide from road transport. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 86(4), 41–54, DOI:10.14669/AM.VOL86.ART3.
 
44.
To C.N., Milani S., Marzbani H., Jazar R.N.: Improvement of the Autodriver Algorithm for Autonomous Vehicles Using Roll Dynamics. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2021, 91(1), 5–23, DOI:10.14669/AM.VOL91.ART1.
 
45.
Tomaszewska A., Chu Z., Feng X., O'Kane S., Liu X., Chen J. et al.: Lithium-ion battery fast charging: A review. eTransportation. 2019, 1, 1–28, DOI: 10.1016/j.etran.2019.100011.
 
46.
Vepsäläinen J., Otto K., Lajunen A., Tammi K.: Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions. Energy. 2019, 169, 433–443, DOI: 10.1016/j.energy.2018.12.064.
 
47.
Wang A., Guo J.: A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle. Open Physics. 2017, 15(1), 984–991, DOI: 10.1515/phys-2017-0122.
 
48.
Warianek M.G., Lejda K.: The Environmental Safety of the Fiat 0.9 TwinAir Compressed Natural Gas Engine. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2020, 88(2), 47–60, DOI:10.14669/AM.VOL88.ART4.
 
49.
Xylia M., Silveira S.: The role of charging technologies in upscaling the use of electric buses in public transport: Experiences from demonstration projects. Transportation Research Part A: Policy and Practice. 2018, 118, 399–415, DOI: 10.1016/j.tra.2018.09.011.
 
50.
 
51.
 
52.
 
53.
https://dakro.pl/ (access 03.11.2020).
 
54.
http://bmzpoland.pl/ (access 03.06.2021).
 
Deklaracja dostępności
 
eISSN:2084-476X