PL EN
PRACA ORYGINALNA
Selection of the photovoltaic system power for the electric vehicle
 
Więcej
Ukryj
1
Department of Transportation and Informatics, WSEI University, Polska
 
 
Data nadesłania: 08-04-2023
 
 
Data ostatniej rewizji: 15-05-2023
 
 
Data akceptacji: 30-05-2023
 
 
Data publikacji: 30-06-2023
 
 
Autor do korespondencji
Arkadiusz Małek   

Department of Transportation and Informatics, WSEI University, Projektowa 4, 20-209, Lublin, Polska
 
 
The Archives of Automotive Engineering – Archiwum Motoryzacji 2023;100(2):44-61
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The article presents a method of a photovoltaic system power selecting for proper electric vehicle. At the beginning, the characteristics of the electric vehicle itself and its traction batteries were made in order to determine the method of its charging. In the presented studies, measurement data from the operation of real photovoltaic systems was recorded and processed. The algorithm used includes examining the energy consumption profile of the owner's residential building. The combined demand for electricity of the electric vehicle and the building made it possible to determine the planned photovoltaic system. The authors presented three possibilities of its location. It can be installed on the roof of the building, on the ground next to the building or on the carport under which an electric vehicle can be parked. Finally, the Metalog family of probability distributions was used to analytically validate the power choice of the photovoltaic system. The authors have developed an algorithm using human and artificial intelligence that helps to properly select the power of the photovoltaic system for the vehicle.
 
REFERENCJE (41)
1.
Ansari S., Ayob A., Hossain Lipu M.S., Hussain A., Saad M.H.M.: Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries. Energies. 2021, 14(22), 7521, DOI: 10.3390/en14227521.
 
2.
Bień A., Janicki A.: Profilowanie odbiorcy energii elektrycznej – proste i wydajne. Wiadomości Elektrotechniczne. 2019, 3, 44–47, DOI: 10.15199/74.2019.3.8.
 
3.
Brzozowski M., Kruszewski M., Janicki A.: Enhancing Electricity Meters with Smart Functionality Using Metering System with Optical Sensors. The Fourth International Conference on Advances in Sensors, Actuators, Metering and Sensing ALLSENSORS 2019. IARIA Xpert Publishing Services. 2019, 29–32.
 
4.
Colmenar-Santos A., Muñoz-Gómez A.-M., Rosales-Asensio E., López-Rey Á.: Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. Energy. 2019, 183, 61–74, DOI: 10.1016/j.energy.2019.06.118.
 
5.
Conradie P.D.F., Olabanji O.A., Skrúcaný T., Kendra M., Stopka O.: The effect of fuel on the energy consumption and production of greenhouse gases in transport. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2018, 82(4), 5–14, DOI: 10.14669/AM.VOL82.ART1.
 
6.
Čulík K., Štefancová V., Hrudkay K., Morgoš J.: Interior Heating and Its Influence on Electric Bus Consumption. Energies. 2021, 14(24), 8346, DOI: 10.3390/en14248346.
 
7.
Di Foggia G.: Drivers and challenges of electric vehicles integration in corporate fleet: An empirical survey. Research in Transportation Business & Management. 2021, 41, 100627, DOI: 10.1016/j.rtbm.2021.100627.
 
8.
Du J., Liu Y., Mo X., Li Y., Li J., Wu X., et al.: Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles. Applied Energy. 2019, 255, 113793, DOI: 10.1016/j.apenergy.2019.113793.
 
9.
Dudziak A., Caban J., Stopka O., Stoma M., Sejkorová M., Stopková M.: Vehicle Market Analysis of Drivers’ Preferences in Terms of the Propulsion Systems: The Czech Case Study. Energies. 2023, 16(5), 2418, DOI: 10.3390/en16052418.
 
10.
Dudziak A., Droździel P., Stoma M., Caban J.: Market Electrification for BEV and PHEV in Relation to the Level of Vehicle Autonomy. Energies. 2022, 15(9), 3120, DOI: 10.3390/en15093120.
 
11.
Erd A., Stokłosa J.: Main Design Guidelines for Battery Management Systems for Traction Purposes. XI International Scientific and Technical Conference Automotive Safety 2018. 2018, 1–5, DOI: 10.1109/AUTOSAFE.2018.8373345.
 
12.
Fragiacomo P., Piraino F., Genovese M.: Insights for Industry 4.0 Applications into a Hydrogen Advanced Mobility. Procedia Manufacturing. 2020, 42, 239–245, DOI: 10.1016/j.promfg.2020.02.077.
 
13.
Gan Y., Chen Z., Wu L., Cheng S., Lin P.: Fault diagnosis of PV array using adaptive network based fuzzy inference system. IOP Conference Series: Earth and Environmental Science. 2020, 467(1), 012083, DOI: 10.1088/1755-1315/467/1/012083.
 
14.
Globisch J., Plötz P., Dütschke E., Wietschel M.: Consumer preferences for public charging infrastructure for electric vehicles. Transport Policy. 2019, 81, 54–63, DOI: 10.1016/j.tranpol.2019.05.017.
 
15.
Gnann T., Funke S., Jakobsson N., Plötz P., Sprei F., Bennehag A.: Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transportation Research Part D: Transport and Environment. 2018, 62, 314–329, DOI: 10.1016/j.trd.2018.03.004.
 
16.
Habla W., Huwe V., Kesternich M.: Electric and conventional vehicle usage in private and car sharing fleets in Germany. Transportation Research Part D: Transport and Environment. 2021, 93, 102729, DOI: 10.1016/j.trd.2021.102729.
 
17.
Ibrahim A., Jiang F.: The electric vehicle energy management: An overview of the energy system and related modeling and simulation. Renewable and Sustainable Energy Reviews. 2021, 144, 111049, DOI: 10.1016/j.rser.2021.111049.
 
18.
Iringová A., Kovačic M.: Design and optimization of photovoltaic systems in a parking garage - a case study. Transportation Research Procedia. 2021, 55, 1171–1179, DOI: 10.1016/j.trpro.2021.07.097.
 
19.
Keelin T.W.: The Metalog Distributions. Decision Analysis. 2016, 13(4), 243–277, DOI: 10.1287/deca.2016.0338.
 
20.
Keelin T.W., Howard R.A.: The Metalog Distributions: Virtually Unlimited Shape Flexibility, Combining Expert Opinion in Closed Form, and Bayesian Updating in Closed Form. Stanford University, 2021.
 
21.
Kostopoulos E., Spyropoulos G., Christopoulos K., Kaldellis J.K.: Solar energy contribution to an electric vehicle needs on the basis of long-term measurements. Procedia Structural Integrity. 2018, 10, 203–210, DOI: 10.1016/j.prostr.2018.09.029.
 
22.
Kulik A.C., Tonolo É.A., Scortegagna A.K., da Silva J.E., Urbanetz Junior J.: Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil. Energies. 2021, 14(16), 5027, DOI: 10.3390/en14165027.
 
23.
Liberto C., Valenti G., Orchi S., Lelli M., Nigro M., Ferrara M.: The Impact of Electric Mobility Scenarios in Large Urban Areas: The Rome Case Study. IEEE Transactions on Intelligent Transportation Systems. 2018, 19(11), 3540–3549, DOI: 10.1109/TITS.2018.2832004.
 
24.
Madeti S.R., Singh S.: Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews. 2017, 67, 1180–1207, DOI: 10.1016/j.rser.2016.09.088.
 
25.
Malinkiewicz O., Imaizumi M., Sapkota S.B., Ohshima T., Öz S.: Radiation effects on the performance of flexible perovskite solar cells for space applications. Emergent Materials. 2020, 3(1), 9–14, DOI: 10.1007/s42247-020-00071-8.
 
26.
Małek A., Taccani R.: Long-term test of an electric vehicle charged from a photovoltaic carport. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 86(4), 55–63, DOI: 10.14669/am.vol86.art4.
 
27.
Mehrjerdi H.: Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International Journal of Hydrogen Energy. 2019, 44, 11574–11583, DOI: 10.1016/j.ijhydene.2019.03.158.
 
28.
Mruzek M., Gajdáč I., Kučera L., Gajdošík T.: The Possibilities of Increasing the Electric Vehicle Range. Procedia Engineering. 2017, 192, 621–625, DOI: 10.1016/j.proeng.2017.06.107.
 
29.
Nait-Sidi-Moh A., Ruzmetov A., Bakhouya M., Naitmalek Y., Gaber J.: A Prediction Model of Electric Vehicle Charging Requests. Procedia Computer Science. 2018, 141, 127–134, DOI: 10.1016/j.procs.2018.10.158.
 
30.
Novoa L., Brouwer J.: Dynamics of an integrated solar photovoltaic and battery storage nanogrid for electric vehicle charging. Journal of Power Sources. 2018, 399, 166–178, DOI: 10.1016/j.jpowsour.2018.07.092.
 
31.
Pietra A., Gianni M., Zuliani N., Malabotti S., Taccani R.: Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage. Energies. 2021, 14(17), 5347, DOI: 10.3390/en14175347.
 
32.
Šarkan B., Gnap J., Kiktová M.: The importance of hybrid vehicles in urban traffic in terms of environmental impact. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 85(3), 115–122, DOI: 10.14669/AM.VOL85.ART8.
 
33.
Schücking M., Jochem P.: Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets. Applied Energy. 2021, 293, 116649, DOI: 10.1016/j.apenergy.2021.116649.
 
34.
Seddig K., Jochem P., Fichtner W.: Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics. Applied Energy. 2019, 242, 769–781, DOI: 10.1016/j.apenergy.2019.03.036.
 
35.
Sokolovskij E., Małek A., Caban J., Dudziak A., Matijošius J., Marciniak A.: Selection of a Photovoltaic Carport Power for an Electric Vehicle. Energies. 2023, 16(7), 3126, DOI: 10.3390/en16073126.
 
36.
Solaredge Monitoring Platform: https://monitoringpublic.solar... (access on 2023.04.05).
 
37.
Stańczyk T.L., Hyb L.: Technological and organisational challenges for e-mobility. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019, 84(2), 57–70, DOI: 10.14669/AM.VOL84.ART5.
 
38.
Szumska E., Skuza A., Jurecki R.: The analysis of energy recovered by an electric vehicle during selected braking manoeuvres. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2023, 99(1), 18–29, DOI: 10.14669/AM/162079.
 
39.
Tomaszewska A., Chu Z., Feng X., O'Kane S., Liu X., Chen J., et al.: Lithium-ion battery fast charging: A review. eTransportation. 2019, 1, 1–28, DOI: 10.1016/j.etran.2019.100011.
 
40.
Tucki K., Orynycz O., Dudziak A.: The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries. International Journal of Environmental Research and Public Health. 2022, 19(24), 16783, DOI: 10.3390/ijerph192416783.
 
41.
Wahid M.R., Budiman B.A., Joelianto E., Aziz M.: A Review on Drive Train Technologies for Passenger Electric Vehicles. Energies. 2021, 14(20), 6742, DOI: 10.3390/en14206742.
 
 
CYTOWANIA (1):
1.
Experimental investigation of generating superheated steam using a parabolic dish with a cylindrical cavity receiver: A case study
Naseer W. Obaid, Mishaal A. Abdulkareem
Open Engineering
 
Deklaracja dostępności
 
eISSN:2084-476X
Journals System - logo
Scroll to top